Skip to main content

Advertisement

Log in

Monitoring water quality in a hypereutrophic reservoir using Landsat ETM+ and OLI sensors: how transferable are the water quality algorithms?

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The launch of the Landsat 8 in February 2013 extended the life of the Landsat program to over 40 years, increasing the value of using Landsat to monitor long-term changes in the water quality of small lakes and reservoirs, particularly in poorly monitored freshwater systems. Landsat-based water quality hindcasting often incorporate several Landsat sensors in an effort to increase the temporal range of observations; yet the transferability of water quality algorithms across sensors remains poorly examined. In this study, several empirical algorithms were developed to quantify chlorophyll-a, total suspended matter (TSM), and Secchi disk depth (SDD) from surface reflectance measured by Landsat 7 ETM+ and Landsat 8 OLI sensors. Sensor-specific multiple linear regression models were developed by correlating in situ water quality measurements collected from a semi-arid eutrophic reservoir with band ratios from Landsat ETM+ and OLI sensors, along with ancillary data (water temperature and seasonality) representing ecological patterns in algae growth. Overall, ETM+-based models outperformed (adjusted R2 chlorophyll-a = 0.70, TSM = 0.81, SDD = 0.81) their OLI counterparts (adjusted R2 chlorophyll-a = 0.50, TSM = 0.58, SDD = 0.63). Inter-sensor differences were most apparent for algorithms utilizing the Blue spectral band. The inclusion of water temperature and seasonality improved the power of TSM and SDD models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Fahdawi, A. A. H., Rabee, A. M., & Al-Hirmizy, S. M. (2015). Water quality monitoring of Al-Habbaniyah Lake using remote sensing and in situ measurements. Environmental Modelling and Software, 187(6), 367. https://doi.org/10.1007/s10661-015-4607-2

    Google Scholar 

  • Alavipanah, S. K., Amiri, R., Matinfar, H. R., Emam, A. R., & Shamsipor, A. (2007). Cross-sensor analysis of TM and ETM + spectral information content in arid and urban areas. World Applied Sciences Journal, 2, 665–673.

    Google Scholar 

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.

    Article  Google Scholar 

  • Allan, M. G., Hamilton, D. P., Hicks, B., & Brabyn, L. (2015). Empirical and semi-analytical chlorophyll a algorithms for multi-temporal monitoring of New Zealand lakes using Landsat. Environmental Monitoring and Assessment, 187(6), 364–386. https://doi.org/10.1007/s10661-015-4585-4

    Article  Google Scholar 

  • Alparslan, E., Aydoner, C., Tufekci, V., & Tufekci, H. (2007). Water quality assessment at Omerli dam using remote sensing techniques. Environmental Monitoring and Assessment, 135(1-3), 391–398. https://doi.org/10.1007/s10661-007-9658-6

    Article  CAS  Google Scholar 

  • APHA, WEF, AWWA. (2012). Standard methods for the examination of water and wastewater: 22nd edition (22nd ed.). Washington, D.C.: American Public Health Association, American Water Works Association, Water Environment Federation.

    Google Scholar 

  • Arenz, R. F., Lewis, W. M., & Saunders, J. F. (1996). Determination of chlorophyll and dissolved organic carbon from reflectance data for Colorado reservoirs. International Journal of Remote Sensing, 17(8), 1547–1566. https://doi.org/10.1080/01431169608948723

    Article  Google Scholar 

  • BAMAS (2005). Litani Water Quality Management Project: Technical Survey Report. (143). Beirut, Lebanon.

  • Banerjee, S., Carlin, B. P., & Gelfand, A. E. (2014). Hierarchical modeling and analysis for spatial data. Boca Raton: CRC Press.

    Google Scholar 

  • Bonansea, M., Rodriquez, C. M., Pinotti, L., & Ferrero, S. (2015). Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina ). Remote Sensing of Environment, 158, 28–41. https://doi.org/10.1016/j.rse.2014.10.032

    Article  Google Scholar 

  • Brezonik, P., Menken, K. D., & Bauer, M. (2005). Landsat-based remote sensing of lake water quality characteristics, including chlorophyll and colored dissolved organic matter (CDOM). Lake and Reservoir Management, 21(4), 373–382. https://doi.org/10.1080/07438140509354442

    Article  Google Scholar 

  • Brivio, P. A., Giardino, C., & Zilioli, E. (2001). Determination of chlorophyll concentration changes in Lake Garda using an image-based radiative transfer code for Landsat TM images. International Journal of Remote Sensing, 22(2-3), 487–502. https://doi.org/10.1080/014311601450059

    Article  Google Scholar 

  • Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113, 893–903.

    Article  Google Scholar 

  • Chao Rodríguez, Y., El Anjoumi, A., Domínguez Gómez, J. A., Rodríguez Pérez, D., & Rico, E. (2014). Using Landsat image time series to study a small water body in northern Spain. Environmental Monitoring and Assessment, 186(6), 3511–3522. https://doi.org/10.1007/s10661-014-3634-8

    Google Scholar 

  • Cheng, K. S., & Lei, T. C. (2001). Reservoir trophic state evaluation using Landsat TM images. Journal of the American Water Resources Association, 37(5), 1321–1334. https://doi.org/10.1111/j.1752-1688.2001.tb03642.x

    Article  CAS  Google Scholar 

  • Chipman, J. W., Lillesand, T. M., Schmaltz, J. E., Leale, J. E., & Nordheim, M. J. (2004). Mapping lake water clarity with Landsat images in Wisconsin, USA. Canadian Journal of Remote Sensing, 30(1), 1–7.

    Article  Google Scholar 

  • Claverie, M., Vermote, E. F., Franch, B., & Masek, J. G. (2015). Evaluation of the Landsat-5 TM and Landsat-7 ETM+ surface reflectance products. Remote Sensing of Environment, 169, 390–403.

    Article  Google Scholar 

  • Craney, T. A., & Surles, J. G. (2002). Model-dependent variance inflation factor cutoff values. Quality Engineering, 14(3), 391–403. https://doi.org/10.1081/QEN-120001878

    Article  Google Scholar 

  • Czapla-Myers, J., Anderson, N., Bigger, S. (2013). Early ground-based vicarious calibration results for Landsat 8 OLI. In the Proceedings of the SPIE 8866, Earth Observing Systems XVIII. Volume 8866, 88660S. San Diego, California. doi: https://doi.org/10.1117/12.2022493.

  • Dekker, A. G., & Peters, S. W. M. (1993). Use of the thematic mapper for the analysis of eutrophic lakes: a case study in the Netherlands. International Journal of Remote Sensing, 14(5), 799–821. https://doi.org/10.1080/01431169308904379

    Article  Google Scholar 

  • Dekker, A. G., Vos, R. J., & Peters, S. W. (2001). Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes. The Science of the Total Environment, 268(1-3), 197–214. https://doi.org/10.1016/S0048-9697(00)00679-3

    Article  CAS  Google Scholar 

  • Duan, H., Zhang, Y., Zhang, B., Song, K., & Wang, Z. (2007). Assessment of chlorophyll-a concentration and trophic state for Lake Chagan using Landsat TM and field spectral data. Environmental Monitoring and Assessment, 129(1-3), 295–308. https://doi.org/10.1007/s10661-006-9362-y

    Article  CAS  Google Scholar 

  • ELARD. (2011). Business Plan for Combating Pollution in Qaraoun Lake (p. 475). Beirut, Lebanon: United Nations Development Programme (UNDP).

    Google Scholar 

  • El-Fadel, M., & Zeinati, M. (2000). Water resources management in Lebanon: Characterization, water balance and policy options. Water Resources Development, 16, 615–638.

    Article  Google Scholar 

  • El-Fadel, M., Maroun, R., Bsat, R., Makki, M., Reiss, P., & Rothberg, D. (2003). Water quality assessment of the Upper Litani River Basin and Lake Qaraoun, Lebanon. Forward program, Integrated Water and Coastal Resources Mangement (p. 77). Bethesda, MD: Development Alternatives, Inc..

    Google Scholar 

  • Fadel, A., Lemaire, B., Atoui, A., Vinçon-Leite, B., Amacha, N., Slim, K., et al. (2014). First assessment of the ecological status of Karaoun Reservoir, Lebanon. Lakes & Reservoirs: Research & Management, 19, 142–157.

    Article  CAS  Google Scholar 

  • Feng, M., Sexton, J. O., Huang, C., Masek, J. G., Vermote, E. F., Gao, F., et al. (2013). Global surface reflectance products from Landsat: Assessment using coincident MODIS observations. Remote Sensing of Environment, 134, 276–293. https://doi.org/10.1016/j.rse.2013.02.031.

    Article  Google Scholar 

  • Fuller, L. M., Aichele, S. S., & Minnerick, R. J. (2004). Predicting water quality by relating Secchi-disk transparency and chlorophyll a measurments to satellite imagery for Michigan Inland lakes. Reston: USGS, Michigan Department of Environmental Quality.

    Google Scholar 

  • Frazier, P. S., & Page, K. J. (2000). Water body detection and delineation with Landsat TM data. Photogrammetric Engineering and Remote Sensing, 66, 1461–1467.

    Google Scholar 

  • Giardino, C., Pepe, M., Brivio, P. A., Ghezzi, P., & Zilioli, E. (2001). Detecting chlorophyll, Secchi disk depth and surface temperature in a sub-alpine lake using Landsat imagery. The Science of The Total Environment, 268(1-3), 19–29.

    Article  CAS  Google Scholar 

  • Gitelson, A. (1992). The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration. International Journal of Remote Sensing, 13(17), 3367–3373. https://doi.org/10.1080/01431169208904125

    Article  Google Scholar 

  • Gitelson, A., and Yacobi, Y. (1995). Reflectance in the red and near infra-red ranges of the spectrum as tool for remote chlorophyll estimation in inland waters-Lake Kinneret case study. In the Proceedings of the Eighteenth Convention of Electrical and Electronics Engineers in Israel, Tel Aviv, Israel, 07-08 Mar 1995. (pp. 5.2. 6/1-5.2. 6/5): IEEE. doi:https://doi.org/10.1109/EEIS.1995.514184.

  • Gitelson, A., Szilagyi, F., & Mittenzwey, K. (1993). Improving quantitative remote sensing for monitoring of inland water quality. Water Research, 27(7), 1185–1194. https://doi.org/10.1016/0043-1354(93)90010-F

    Article  CAS  Google Scholar 

  • Gitelson, A., Dall'Olmo, G., Moses, W., Rundquist, D., Barrow, T., Fisher, T., et al. (2008). A simple semianalytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sensing of Environment, 112(9), 3582–3593.

    Article  Google Scholar 

  • Goslee, S. C. (2011). Analyzing remote sensing data in R : The landsat package. Journal of Statistical Software, 43, 1–25.

    Article  Google Scholar 

  • Greb, S. R., Martin, A. A., & Chipman, J. W. (2009). Water clarity monitoring of lakes in Wisconsin, USA using Landsat. In Proceedings of 33rd International Symposium of Remote Sensing of the Environment, Stresa, Italy, May 4-8 2009

  • Gurlin, D., Gitelson, A. A., & Moses, W. J. (2011). Remote estimation of chl-a concentration in turbid productive waters—Return to a simple two-band NIR-red model? Remote Sensing of Environment, 115(12), 3479–3490.

    Article  Google Scholar 

  • Hadjimitsis, D. G., & Clayton, C. (2009). Assessment of temporal variations of water quality in inland water bodies using atmospheric corrected satellite remotely sensed image data. Environmental Monitoring and Assessment, 159(1-4), 281–292. https://doi.org/10.1007/s10661-008-0629-3

    Article  CAS  Google Scholar 

  • Han, L., Rundquist, D., Liu, L., Fraser, R., & Schalles, J. (1994). The spectral responses of algal chlorophyll in water with varying levels of suspended sediment. International Journal of Remote Sensing, 15(18), 3707–3718.

    Article  Google Scholar 

  • Hansen, C. H., Williams, G. P., Adjei, Z., Barlow, A., Nelson, J., & Miller, A. W. (2015). Reservoir water quality monitoring using remote sensing with seasonal models : Case study of five central-Utah reservoirs. Lake and Reservoir Management, 31(3), 225–240. https://doi.org/10.1080/10402381.2015.1065937

    Article  CAS  Google Scholar 

  • Härmä, P., Vepsäläinen, J., Hannonen, T., Pyhälahti, T., Kämäri, J., Kallio, K., Eloheimo, K., & Koponen, S. (2001). Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland. The Science of the Total Environment, 268(1-3), 107–121. https://doi.org/10.1016/S0048-9697(00)00688-4

    Article  Google Scholar 

  • He, W., Chen, S., Liu, X., & Chen, J. (2008). Water quality monitoring in a slightly-polluted inland water body through remote sensing - Case study of the Guanting Reservoir in Beijing, China. Frontiers of Environmental Science and Engineering in China, 1, 163–171. https://doi.org/10.1007/s11783-008-0027-7.

    Article  Google Scholar 

  • Helder, D.L., Pesta, F., Brinkmann, J., Leigh, L., Aaron, D., Markhan, B., Barsi, J., Morfitt, R., Micijevic, E., Czapla-Myers, J. (2013). Landsat-8 OLI: on-orbit spatial uniformity, absolute calibration and stability. In the Proceedings of the 22nd Conference on Characterization of Radiometric Calibration for Remote Sensing. Logan, Utah, 19-22 August 2013. https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1025&context=calcon

  • Hicks, B. J., Stichbury, G. A., Brabyn, L. K., Allan, M. G., & Ashraf, S. (2013). Hindcasting water clarity from Landsat satellite images of unmonitored shallow lakes in the Waikato region, New Zealand. Environmental Monitoring and Assessment, 185(9), 7245–7261. https://doi.org/10.1007/s10661-013-3098-2

    Article  CAS  Google Scholar 

  • Hijmans, R. J., & van Etten, J. (2014). Raster: Geographic data analysis and modeling. R package version (R package version 2.0-12 ed., Vol. 517).

  • Holden, C. E., & Woodcock, C. E. (2016). An analysis of Landsat 7 and Landsat 8 underflight data and the implications for time series investigations. Remote Sensing of Environment, 185, 16–36. https://doi.org/10.1016/j.rse.2016.02.052

    Article  Google Scholar 

  • International Resources Group (2011). Litani River Basin Management Support Program. Litani River Basin Management Support (LRBMS) Program: United States Agency for International Development (USAID).

  • Irons, J. R., Dwyer, J. L., & Barsi, J. A. (2012). The next Landsat satellite: the Landsat data continuity mission. Remote Sensing of Environment, 122, 11–21. https://doi.org/10.1016/j.rse.2011.08.026

    Article  Google Scholar 

  • Jurdi, M., Korfali, S. I., Karahagopian, Y., & Davies, B. E. (2002). Evaluation of water quality of the Qaraaoun Reservoir, Lebanon: Suitability for multipurpose usage. Environmental monitoring and assessment, 77(1), 11–30.

    Article  CAS  Google Scholar 

  • Kallio, K., Pulliainen, J., & Ylöstalo, P. (2005). MERIS, MODIS and ETM+ channel configurations in the estimation of lake water quality from subsurface reflectance using semi-analytical and empirical algorithms. Geophysica, 41(1-2), 31–55.

    Google Scholar 

  • Karakaya, N., Evrendilek, F., Aslan, G., Gungor, K., & Karaka, D. (2011). Monitoring of lake water quality along with trophic gradient using landsat data. International journal of Environmental Science and Technology, 8, 817–822.

    CAS  Google Scholar 

  • Ke, Y., Im, J., Lee, J., Gong, H., & Ryu, Y. (2015). Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in-situ observations. Remote Sensing of Environment, 164, 298–313. https://doi.org/10.1016/j.rse.2015.04.004

    Article  Google Scholar 

  • Khattab, M. F. O., & Merkel, B. J. (2014). Application of Landsat 5 and Landsat 7 images data for water quality mapping in Mosul dam Lake, northern Iraq. Arabian Journal of Geosciences, 7(9), 3557–3573. https://doi.org/10.1007/s12517-013-1026-y

    Article  Google Scholar 

  • Kloiber, S. M., Brezonik, P. L., & Bauer, M. E. (2002a). Application of Landsat imagery to regional-scale assessments of lake clarity. Water Research, 36(17), 4330–4340. https://doi.org/10.1016/S0043-1354(02)00146-X

    Article  CAS  Google Scholar 

  • Kloiber, S. M., Brezonik, P. L., Olmanson, L. G., & Bauer, M. E. (2002b). A procedure for regional lake water clarity assessment using Landsat multispectral data. Remote Sensing of Environment, 82(1), 38–47. https://doi.org/10.1016/S0034-4257(02)00022-6

    Article  Google Scholar 

  • Korfali, S. I., Jurdi, M., & Davies, B. E. (2006). Variation of metals in bed sediments of Qaraaoun Reservoir, Lebanon. Environmental monitoring and assessment, 115, 307–319.

    Article  CAS  Google Scholar 

  • Kutser, T. (2012). The possibility of using the Landsat image archive for monitoring long time trends in coloured dissolved organic matter concentration in lake waters. Remote Sensing of Environment, 123, 334–338.

    Article  Google Scholar 

  • Le, C., Li, Y., Zha, Y., Sun, D., Huang, C., & Lu, H. (2009). A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: the case of Taihu Lake, China. Remote Sensing of Environment, 113(6), 1175–1182. https://doi.org/10.1016/j.rse.2009.02.005

    Article  Google Scholar 

  • Lee, Z., Zaneveld, J. R. V., Maritorena, S., Loisel, H., Doerffer, R., Lyon, P., et al. (2006). Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications. In Z. Lee (Ed.), Reports of the International Ocean-Colour Coordinating Group (p. 89). Dartmouth, Canada: International Ocean-Colour Coordinating Group.

    Google Scholar 

  • Lim, J., & Choi, M. (2015). Assessment of water quality based on Landsat 8 operational land imager associated with human activities in Korea. Environmental monitoring and assessment, 187(6), 1–17.

    Article  Google Scholar 

  • Long, C. M., & Pavelsky, T. M. (2013). Remote sensing of suspended sediment concentration and hydrologic connectivity in a complex wetland environment. Remote Sensing of Environment, 129, 197–209.

    Article  Google Scholar 

  • Lymburner, L., Botha, E., Hestir, E., Anstee, J., Sagar, S., Dekker, A., & Malthus, T. (2016). Landsat 8: Providing continuity and increased precision for measuring multi-decadal time series of total suspended matter. Remote Sensing of Environment, 185, 108–118. https://doi.org/10.1016/j.rse.2016.04.011

    Article  Google Scholar 

  • Ma, R., & Dai, J. (2005). Investigation of chlorophyll-a and total suspended matter concentrations using Landsat ETM and field spectral measurement in Taihu Lake, China. International Journal of Remote Sensing, 26(13), 2779–2787. https://doi.org/10.1080/01431160512331326648

    Article  Google Scholar 

  • Maindonald, J., & Braun, W. J. (2014). DAAG: Data Analysis And Graphics data and functions. In R Core Team (Ed.), (Vol. R package version 1.20): R.

  • Markogianni, V., Dimitriou, E., & Karaouzas, I. (2014). Water quality monitoring and assessment of an urban Mediterranean lake facilitated by remote sensing applications. Environmental monitoring and assessment, 186(8), 5009–5026.

    Article  CAS  Google Scholar 

  • Masek, J. G., Vermote, E. F., Saleous, N. E., Wolfe, R., Hall, F. G., Huemmrich, K. F., et al. (2006). A Landsat surface reflectance dataset for North American, 1990-2000. IEEE Geoscience and Remote Sensing Letters, 3(1), 68–72.

    Article  Google Scholar 

  • Mason, R. L., Gunst, R. F., & Hess, J. L. (2003). Statistical design and analysis of experiments: with applications to engineering and science (2nd ed.). Hoboken: John Wiley & Sons Ltd. https://doi.org/10.1002/0471458503

    Book  Google Scholar 

  • Matthews, M. W. (2011). A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. International Journal of Remote Sensing, 32(21), 6855–6899. https://doi.org/10.1080/01431161.2010.512947

    Article  Google Scholar 

  • Matthews, M. W., Bernard, S., & Robertson, L. (2012). An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters. Remote Sensing of Environment, 124, 637–652. https://doi.org/10.1016/j.rse.2012.05.032

    Article  Google Scholar 

  • Mayo, M., Gitelson, A., Yacobi, Y. Z., & Ben-Avraham, Z. (1995). Chlorophyll distribution in Lake Kinneret determined from Landsat thematic mapper data. International Journal of Remote Sensing, 16(1), 175–182. https://doi.org/10.1080/01431169508954386

    Article  Google Scholar 

  • McCullough, I. M., Loftin, C. S., & Sader, S. A. (2012). Combining lake and watershed characteristics with Landsat TM data for remote estimation of regional lake clarity. Remote Sensing of Environment, 123, 109–115. https://doi.org/10.1016/j.rse.2012.03.006

    Article  Google Scholar 

  • Ministry of Environment (2011). State and Trends of the Lebanese Environment. (3 ed., pp. 355). Beirut, Lebanon.

  • Moses, W. J., Gitelson, A. A., Perk, R. L., Gurlin, D., Rundquist, D. C., Leavitt, B. C., et al. (2012). Estimation of chlorophyll-a concentration in turbid productive waters using airborn hyperspectral data. Water Research, 46(4), 993–1004.

    Article  CAS  Google Scholar 

  • Nazeer, M., Nichol, J. E., & Yung, Y. K. (2014). Evaluation of atmospheric correction models and Landsat surface reflectance product in an urban coastal environment. Internaltional Journal of Remote Sensing, 35(16), 6271–6291.

    Article  Google Scholar 

  • Nellis, M. D., Harrington, J. A., & Wu, J. (1998). Remote sensing of temporal and spatial variations in pool size, suspended sediment, turbidity, and Secchi depth in Tuttle Creek Reservoir, Kansas: 1993. Geomorphology, 21(3), 281–293.

    Article  Google Scholar 

  • Odermatt, D., Gitelson, A., Brando, V. E., & Schaepman, M. (2012). Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sensing of Environment, 118, 116–126. https://doi.org/10.1016/j.rse.2011.11.013

    Article  Google Scholar 

  • Olmanson, L. G., Bauer, M. E., & Brezonik, P. L. (2008). A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes. Remote Sensing of Environment, 112(11), 4086–4097. https://doi.org/10.1016/j.rse.2007.12.013

    Article  Google Scholar 

  • Olmanson, L. G., Brezonik, P. L., & Bauer, M. E. (2011). Evaluation of medium to low resolution satellite imagery for regional lake water quality assessments. Water Resources Research, 47, 1–14.

    Article  Google Scholar 

  • Olmanson, L. G., Brezonik, P. L., & Bauer, M. E. (2013). Airborne hyperspectral remote sensing to assess spatial distribution of water quality characteristics in large rivers: The Mississippi River and its tributaries in Minnesota. Remote Sensing of Environment, 130, 254–265.

    Article  Google Scholar 

  • Olmanson, L.G., Brezonik, P.L., Bauer, M.E. (2015). Remote Sensing for Regional Lake Water Quality Assessment: Capabilities and Limitations of Current and Upcoming Satellite Systems, in: Younos, T. and Parece, T.E. (Eds.), Advances in Watershed Science and Assessment. Springer International Publishing, pp. 111–140.

  • Olmanson, L. G., Brezonik, P. L., Finlay, J. C., & Bauer, M. E. (2016). Comparison of Landsat 8 and Landsat 7 for regional measurements of CDOM and water clarity in lakes. Remote Sensing of Environment, 185, 119–128. https://doi.org/10.1016/j.rse.2016.01.007

    Article  Google Scholar 

  • Onderka, M., & Pekárová, P. (2008). Retrieval of suspended particulate matter concentrations in the Danube River from Landsat ETM data. Science of the Total Environment, 397(1), 238–243.

    Article  CAS  Google Scholar 

  • O'Reilly, J. E., Maritorena, S., Mitchell, B. G., Siegel, D. A., Carder, K. L., Graver, S. A., et al. (1998). Ocean color chlorophyll algorithms for SeaWiFS. Journal of Geophysical Research, 103, 24937–24953.

    Article  Google Scholar 

  • O'Reilly, J. E., Maritorena, S., Siegel, D. A., O'Brien, M. C., Toole, D., Mitchell, B. G., et al. (2001). Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4. Volume 11. Greenbelt, Maryland.

  • Pahlevan, N., Lee, Z., Wei, J., Schlaaf, C. B., Schott, J. R., & Berk, A. (2014). On-orbit radiometric characterization of OLI (Landsat-8) for applications in aquatic remote sensing. Remote Sensing of Environment, 154, 272–284. https://doi.org/10.1016/j.rse.2014.08.001

    Article  Google Scholar 

  • R Core Team. (2015). R: A Language and Environment for Statistical Computing. In R. D. C. Team (Ed.), R Foundation for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria.

    Google Scholar 

  • Ritchie, J. C., Cooper, C. M., & Yongqing, J. (1987). Using Landsat multispectral scanner data to estimate suspended sediments in Moon Lake, Mississippi. Remote Sensing of Environment, 23(1), 65–81.

    Article  Google Scholar 

  • Ritchie, J. C., Cooper, C. M., & Schiebe, F. R. (1990). The relationship of MSS and TM digital data with suspended sediments , chlorophyll , and temperature in Moon Lake , Mississippi. Remote Sensing of Environment, 33(2), 137–148. https://doi.org/10.1016/0034-4257(90)90039-O

    Article  Google Scholar 

  • Roy, D. P., Kovalskyy, V., Zhang, H. K., Vermote, E. F., Yan, L., Kumar, S. S., & Egorov, A. (2016). Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sensing of Environment, 185, 57–70. https://doi.org/10.1016/j.rse.2015.12.024

    Article  Google Scholar 

  • Salama, M. S., Radwan, M., & van der Velde, R. (2012). A hydro-optical model for deriving water quality variables from satellite images (HydroSat): A case study of the Nile River demonstrating the future Sentinel-2 capabilities. Physics and Chemistry of the Earth, 50-52, 224–232. https://doi.org/10.1016/j.pce.2012.08.013.

    Article  Google Scholar 

  • Sass, G. Z., Creed, I. F., Bayley, S. E., & Devito, K. J. (2007). Understanding variation in trophic status of lakes on the Boreal Plain: a 20 year retrospective using Landsat TM imagery. Remote Sensing of Environment, 109(2), 127–141. https://doi.org/10.1016/j.rse.2006.12.010

    Article  Google Scholar 

  • Sawaya, K., Olmanson, L. G., Heinert, N. J., Brezonik, P. I., & Bauer, M. E. (2003). Extending satellite remote sensing to local scales: land and water resource monitoring using high-resolution imagery. Remote Sensing of Environment, 88(1-2), 144–156. https://doi.org/10.1016/j.rse.2003.04.006

    Article  Google Scholar 

  • Sendra, V., Camacho, F., Sanchez, J., Jimenez-Munoz, J. C., & Garcia-Hara, F. J. Metodo para la correccion atmosferica de imagenes Landsat (2015). In J. Mª Bustamante Díaz, R. Díaz-Delgado, D. Aragonés Borrego, I. Afán Asencio, & D. García (Eds.), XVI Congreso de la Asociación Española de Teledetección, Seville, Spain, 21–23 October, 2015: Teledetección: Humedales y Espacios Protegidos

  • Serwan, M., & Baban, J. (1993). Detecting water quality parameters in the Norfolk broads, U.K., using Landsat imagery. International Journal of Remote Sensing, 14, 1247–1267.

    Article  Google Scholar 

  • Shaban, A., & Nassif, N. (2007). Pollution in Qaraoun Lake, Central Lebanon. Journal of Environmental Hydrology, 15, 1–14.

    Google Scholar 

  • Shafique, N. A., Fulk, F., Autrey, B. C., & Flotemersch, J. (2003). Hyperspectral remote sensing of water quality parameters for large rivers in the Ohio River basin (pp. 216–221). Benson, Arizona: In the Proceedings of the First Interagency Conference on Research in the Watersheds. USDA-ARS.

    Google Scholar 

  • Slim, K., Atoui, A., Elzein, G., & Temsah, M. (2012). Effets des facteurs environnementaux sur la qualite de l'eau et la proliferation toxique des cyanobacteries du Lac Karaoun (Liban). Larhyss Journal, 10, 29–43.

    Google Scholar 

  • Stumpf, R. P., Davis, T. W., Wynne, T. T., Graham, J. L., Loftin, K. A., Johengen, T. H., et al. (2016). Challenges for mapping cyanotoxin patterns from remote sensing of cyanobacteria. Harmful Algae, 54, 160–173. https://doi.org/10.1016/j.hal.2016.01.005.

    Article  CAS  Google Scholar 

  • Sun, D., Hu, C., Qiu, Z., & Shi, K. (2015). Estimating phycocyanin pigment concentration in productive inland waters using Landsat measurements: a case study in Lake Dianchi. Optics Express, 23(3), 3055–3074. https://doi.org/10.1364/OE.23.003055

    Article  CAS  Google Scholar 

  • Svab, E., Tyler, A. N., Preston, T., Presing, M., & Balogh, K. V. (2005). Characterizing the spectral reflectance of algae in lake waters with high suspended sediment concentrations. International Journal of Remote Sensing, 26(5), 919–928.

    Article  Google Scholar 

  • Tebbs, E. J., Remedios, J. J., & Harper, D. M. (2013). Remote sensing of chlorophyll-a as a measure of cyanobacterial biomass in Lake Bogoria, a hypertrophic, saline–alkaline, flamingo lake, using Landsat ETM+. Remote Sensing of Environment, 135, 92–106. https://doi.org/10.1016/j.rse.2013.03.024

    Article  Google Scholar 

  • Teillet, P. M., Barker, J. L., Markham, B. L., Irish, R. R., Fedosejevs, G., & Storey, J. C. (2001). Radiometric cross-calibration of the Landsat-7 ETM + and Landsat-5 TM sensors based on tandem data sets. NASA Publications, Paper 13.

  • Tibshirani, R., & Leisch, F. (2015). bootstrap: Functions for the Book "An Introduction to the Bootstrap". In R Core Team (Ed.), (R package version 2015.2 ed.): R.

  • Torbick, N., Hu, F., Zhang, J., Qi, J., Zhang, H., & Becker, B. (2008). Mapping Chlorophyll- a Concentrations in West Lake , China using Landsat 7 ETM+. Journal of Great Lakes Research, 34(3), 559–565.

    Article  CAS  Google Scholar 

  • Tyler, A. N., Svab, E., Preston, T., Présing, M., & Kovács, W. A. (2006). Remote sensing of the water quality of shallow lakes: A mixture modelling approach to quantifying phytoplankton in water characterized by high-suspended sediment. International Journal of Remote Sensing, 27(8), 1521–1537. https://doi.org/10.1080/01431160500419311

    Article  Google Scholar 

  • Vermote, E., Justice, C., Claverie, M., & Franch, B. (2016). Preliminary analysis of the performance of the Landsat 8 land surface reflectance product. Remote Sensing of Environment, 185, 46–56. https://doi.org/10.1016/j.rse.2016.04.008

    Article  Google Scholar 

  • Vuolo, F., Mattiuzzi, M., & Atzberger, C. (2015). Comparison of the Landsat Surface Reflectance Climate Data Record (CDR) and manually atmospherically corrected data in a semi-arid European study area. International Journal of Applied Earth Observation and Geoinformation, 42, 1–10.

    Article  Google Scholar 

  • Woodcock, C. E., Andserson, M., Belward, A., Bindschadler, R., Cohen, W., Gao, F., Goward, S. N., Helder, D., Helmer, E., Nemani, R., Oreopoulos, L., Schott, J., Thenkabail, P. S., Vermote, E. F., Vogelmann, J., Wulder, M. A., & Wynne, R. (2008). Free access to Landsat imagery. Science, 320(5879), 1011–1101. https://doi.org/10.1126/science.320.5879.1011a.

    Article  CAS  Google Scholar 

  • Wulder, M. A., Masek, J. G., Cohen, W. B., Loveland, T. R., & Woodcock, C. E. (2012). Opening the archive: how free data has enabled the science and monitoring promise of Landsat. Remote Sensing of Environment, 122, 2–10. https://doi.org/10.1016/j.rse.2012.01.010

    Article  Google Scholar 

  • Yacobi, Y. Z., Gitelson, A., & Mayo, M. (1995). Remote sensing of chlorophyll in Lake Kinneret using highspectral-resolution radiometer and Landsat TM: spectral features of reflectance and algorithm development. Journal of Plankton Research, 17(11), 2155–2173. https://doi.org/10.1093/plankt/17.11.2155

    Article  CAS  Google Scholar 

  • Zhou, Z., & Zhao, Y. (2011). Research on the Water Quality Monitoring System for Inland Lakes based on Remote Sensing. Procedia Environmental Sciences, 10, 1707–1711.

    Article  Google Scholar 

  • Zhu, Z., Fu, Y., Woodcock, C. E., Olofsson, P., Vogelmann, J. E., Holden, C. E., Wang, M., Dai, S., & Yu, Y. (2016). Including land cover change in analysis of greenness trends using all available Landsat 5, 7, and 8 images: a case study from Guangzhou, China (2000-2014). Remote Sensing of Environment, 185, 243–257. https://doi.org/10.1016/j.rse.2016.03.036

    Article  Google Scholar 

Download references

Funding

This study was made possible through the generous support of the US Agency for International Development through the USAID-NSF PEER initiative (grant # AID-OAA-A-I1-00012) in conjunction with support from the US National Science Foundation under (NSF) (grant # CBET-1058027); the American University of Beirut University Research Board (grant # 103008), and the National Sciences and Engineering Research Council of Canada (NSERC) PGS-D Scholarship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Alameddine.

Electronic supplementary material

ESM 1

Presents the summary statistics of measured in situ Chlorophyll-a, TSM, and SDD concentrations by sensor type. It also shows the results of examining algorithm transferability for the calibrated Landsat 7 algorithms on spectral data from the Landsat 8 sensor and vice versa. (DOCX 262 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deutsch, E.S., Alameddine, I. & El-Fadel, M. Monitoring water quality in a hypereutrophic reservoir using Landsat ETM+ and OLI sensors: how transferable are the water quality algorithms?. Environ Monit Assess 190, 141 (2018). https://doi.org/10.1007/s10661-018-6506-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6506-9

Keywords

Navigation