Skip to main content

Advertisement

Log in

Antioxidant responses in the earthworm Aporrectodea caliginosa of eastern Slovakia: application of principal component analysis as a tool to identify metal contaminated areas

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The soil of Slovak Republic is severely contaminated with heavy metals, creating hazards to soil health. In order to assess the current status with the prospect of selecting the appropriate treatment methods and land use, this investigation aimed to determine a panel of complementary and ecologically relevant biomarkers that reflect adverse biological responses towards terrestrial pollutants. To attain this objective, the concentration of reduced glutathione and enzymes of glutathione antioxidant system were assessed in clitellate earthworm, Aporrectodea caliginosa sampled from selected sites of eastern Slovakia along with the pH and total metal concentration (As, Cd, Pb, Cr, Hg, Mn, Fe, Co, Ni, Cu, Zn) of soils. Positive, significant (p < 0.05) induction of glutathione peroxidase, glutathione reductase, and glutathione-S-transferase activities and depletion of reduced glutathione level (negative correlation) were associated with the increased soil metal concentrations. Metal interference was found in the detoxification process and antioxidant defense mechanism does not efficiently counteract the oxidative stress induced by chronic metal exposure. The tested biomarkers confirmed sensitive and affective response to the pollution of soil contaminants, in this case metals. This has a potential use in ecotoxicological field monitoring. The proposed principal component analysis is a multivariate model of data analysis that represents a cost-effective approach to differentiate metalliferous soils of eastern Slovakia with different health status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barlett, M. D., Briones, M. J. I., Neilson, R., Schmidt, O., Spurgeon, D., & Creamer, R. E. (2010). A critical review of current methods in earthworm ecology: from individuals to populations. European Journal of Soil Biology, 46(2), 67–73. https://doi.org/10.1016/j.ejsobi.2009.11.006.

    Article  Google Scholar 

  • Bengtsson, G., & Rundgren, R. (1992). Seasonal variation of lead uptake in the earthworm Lumbricus terrestris and the influence of soil liming and acidification. Archives of Environmental Contamination and Toxicology, 23(2), 198–205. https://doi.org/10.1007/BF00212275.

    Article  CAS  Google Scholar 

  • Blakemore, R. J. (2008). Cosmopolitan earthworms—an eco-taxonomic guide to the peregrine species of the world (p. 757). Japan: Verm Ecology.

  • Bouche, M. B. (1977). Stratégies lombriciennes. In U. Lohm & T. Persson (Eds.), Soil organisms as components of ecosystems (pp. 122–132). Stockholm: Ecological Bulletin NFR.

    Google Scholar 

  • Brázová, T., Torres, J., Eira, C., Hanzelová, V., Miklisová, D., & Šalamún, P. (2012). Perch and its parasites as heavy metal biomonitors in a freshwater environment: the case study of the Ružín water reservoir, Slovakia. Sensors, 12(12), 3068–3081. https://doi.org/10.3390/s120303068.

    Article  Google Scholar 

  • Calisi, A., Zaccarelli, N., Lionetto, M. G., & Schettino, T. (2013). Integrated biomarker analysis in the earthworm Lumbricus terrestris: application to the monitoring of soil heavy metal pollution. Chemosphere, 90(11), 2637–2644. https://doi.org/10.1016/j.chemosphere.2012.11.040.

    Article  CAS  Google Scholar 

  • Chan, H. M., & Cherian, M. G. (1992). Protective roles of metallothionein and glutathione in hepatotoxicity of cadmium. Toxicology, 72(3), 281–290. https://doi.org/10.1016/0300-483X(92)90179-I.

    Article  CAS  Google Scholar 

  • Clair, D. K. S., & Chow, C. K. (1996). Glutathione peroxidase: activity and steady state level of mRNA. In A. P. Neville & J. K. Frank (Eds.), Free radicals: a practical approach (pp. 227–238). New York: Oxford University Press.

    Google Scholar 

  • Čurlík, J., & Šefčík, P. (1999). Geochemický atlas Slovenskej republiky časť V.—Pôdy (Geochemical atlas of the Slovak republic part V—soils) (p. 99). Bratislava: MŽP SR.

    Google Scholar 

  • Czarniewska, E., Kasprzyk, A., & Ziemnicki, K. (2003). Effect of paraquat and metoxychlor on antioxidant enzymes in frog Rana esculenta L. liver. Biology Letters, 40(2), 125–133.

    CAS  Google Scholar 

  • Daffertshofer, A., Lamoth, C. J. C., Meijer, O. G., & Beek, P. J. (2004). PCA in studying coordination and variability: a tutorial. Clinical Biomechanics, 19(4), 415–428. https://doi.org/10.1016/j.clinbiomech.2004.01.005.

    Article  Google Scholar 

  • Dai, J., Becquer, T., Rouiller, J. H., Reversat, G., Bernhard-Reversat, F., Nahmani, J., & Lavelle, P. (2004). Heavy metal accumulation by two earthworm species and its relationship to total and DTPA-extractable metals in soils. Soil Biology & Biochemistry, 36(1), 91–98. https://doi.org/10.1016/j.soilbio.2003.09.001.

    Article  CAS  Google Scholar 

  • Dey, P., Bible, J., Datta, S., Broderick, S., Jasinski, J., Sunkara, M., Menon, M., & Rajan, K. (2014). Informatics-aided bandgap engineering for solar materials. Computational Materials Science, 83, 185–195. https://doi.org/10.1016/j.commatsci.2013.10.016.

    Article  CAS  Google Scholar 

  • Duncan, D. B. (1955). Multiple range and multiple F tests. Biometrics, 1, 1–42.

    Article  Google Scholar 

  • Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70–77. https://doi.org/10.1016/0003-9861(59)90090-6.

    Article  CAS  Google Scholar 

  • Elumalai, M., Antunes, C., & Guillhermino, L. (2007). Enzymatic biomarkers in the crab Carcinus maenas from Minho River estuary (NW Portugal) exposed to zinc and mercury. Chemosphere, 66(7), 1249–1255. https://doi.org/10.1016/j.chemosphere.2006.07.030.

    Article  CAS  Google Scholar 

  • Environmental Protection Agency (EPA) (2004). Test methods SW-846 on-line. Test Methods for Evaluating Solid Wastes Physical/Chemical Methods. http://www.epa.gov/epaoswer/hazwaste/test/main.htm.

  • Ericksson, L., Johansson, E., Kettaneh-Wold, N., & Wold, S. (2001). Multi- and megavariate data analysis: principles, applications. Umea: Umetrics Ab.

    Google Scholar 

  • Farmer, J. G., Broadway, A., Cave, M. R., Wragg, J., Fordyce, F. M., Graham, M. C., Ngwenya, B. T., & Bewley, R. J. (2011). A lead isotopic study of the human bioaccessibility of lead in urban soil from Glasgow, Scotland. Science of Total Environment, 409, 4958–4965.

    Article  CAS  Google Scholar 

  • Flohe, L. (1998). Glutathione peroxidase brought into focus. In R. P. Mason (Ed.), Free radicals in biology (Vol. 5, pp. 223–254). New York: Academic Press.

    Google Scholar 

  • Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249(22), 7130–7139.

    CAS  Google Scholar 

  • Halliwell, B., & Gutteridge, J. M. C. (1999). Free radicals in biology and medicine (third ed.). New York: Oxford University Press.

    Google Scholar 

  • Handy, R., Galloway, T., & Depledege, M. (2003). A proposal for the use of biomarkers for the assessment of chronic pollution and in regulatory toxicology. Ecotoxicology, 12(1/4), 331–343. https://doi.org/10.1023/A:1022527432252.

    Article  CAS  Google Scholar 

  • Hernandez, L., Probst, A., Probst, J. L., & Ulrich, E. (2003). Heavy metal distribution in some French forest soils: evidence for atmospheric contamination. Science of Total Environment, 312, 195–219.

    Article  CAS  Google Scholar 

  • Hobbelen, P. H., Koolhaas, J. E., & van Gestel, C. A. (2006). Bioaccumulation of heavy metals in the earthworms Lumbricus rubellus and Aporrectodea caliginosa in relation to total and available metal concentrations in field soils. Environmental Pollution, 144(2), 639–646. https://doi.org/10.1016/j.envpol.2006.01.019.

    Article  CAS  Google Scholar 

  • Jozefczak, M., Remans, T., Vangronsveld, J., & Cuypers, A. (2012). Glutathione is a key player in metal-induced oxidative stress defences. International Journal of Molecular Sciences, 13(12), 3145–3175. https://doi.org/10.3390/ijms13033145.

    Article  CAS  Google Scholar 

  • Kammenga, J. E., Dallinger, R., Donker, M. H., Kohler, H. R., Simonsen, V., Triebskorn, V., & Weeks, J. M. (2000). Biomarkers in terrestrial invertebrates for ecotoxicological soil risk assessment. Reviews of Environmental Contamination and Toxicology, 164, 93–147.

    CAS  Google Scholar 

  • Kenji, A. (1999). Glutathione reductase. In J. M. C. Gutteridge & N. Taniguchi (Eds.), Experimental protocols for reactive oxygen and nitrogen species (pp. 81–82). New York: Oxford University Press.

    Google Scholar 

  • Kobza, J. (2005). Soil and plant pollution by potentially toxic elements in Slovakia. Plant, Soil and Environment, 51, 243–248.

    Article  CAS  Google Scholar 

  • Korenius, T., Laurikkala, J., & Juhola, M. (2007). On principal component analysis, cosine and euclidean measures in information retrieval. Information Sciences, 177(22), 4893–4905. https://doi.org/10.1016/j.ins.2007.05.027.

    Article  Google Scholar 

  • Kúšik, D. (2015). History of mining at the territory of Slovakia. Slovak Geological Magazine, 15, 5–20.

    Google Scholar 

  • Lai, H. Y., Hseu, Z. Y., Chen, T. C., Chen, B. C., Guo, H. Y., & Chen, Z. S. (2010). Health risk-based assessment and management of heavy metals-contaminated soil sites in Taiwan. International Journal of Environmental Research and Public Health, 7, 3595–3614.

    Article  CAS  Google Scholar 

  • Laszczyca, P., Augustyniak, M., Babczynska, A., Bednarska, K., Kafel, A., Migula, P., Wilczek, G., & Witas, I. (2004). Profiles of enzymatic activity in earthworms from zinc, lead and cadmium polluted areas near Olkusz (Poland). Environmental International, 30(7), 901–910. https://doi.org/10.1016/j.envint.2004.02.006.

    Article  CAS  Google Scholar 

  • Loutfy, N., Fuerhacker, M., Tundo, P., Raccanelli, S., El Dien, A. G., & Ahmed, M. T. (2006). Dietary intake of dioxins and dioxin-like PCBs, due to the consumption of dairy products, fish/seafood and meat from Ismailia city, Egypt. Science of Total Environment, 370, 1–8.

    Article  CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Measurement of protein with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.

    CAS  Google Scholar 

  • Lukkari, T., Taavitsainen, M., Väisänen, A., & Haimi, J. (2004). Effects of heavy metals on earthworms along contamination gradients in organic rich soils. Ecotoxicology and Environmental Safety, 59(3), 340–348. https://doi.org/10.1016/j.ecoenv.2003.09.011.

    Article  CAS  Google Scholar 

  • Maity, S., Roy, S., Chaudhury, S., & Bhattacharya, S. (2008). Antioxidant responses of the earthworm Lampito mauritii exposed to Pb and Zn contaminated soil. Environmental Pollution, 151(1), 1–7. https://doi.org/10.1016/j.envpol.2007.03.005.

    Article  CAS  Google Scholar 

  • Maity, S., Chaudhury, S., & Bhattacharya, S. (2009). Metallothionein response in earthworms Lampito mauritii (Kinberg) exposed to fly ash. Chemosphere, 77(3), 319–324. https://doi.org/10.1016/j.chemosphere.2009.07.011.

    Article  CAS  Google Scholar 

  • Maity, S., Roy, S., Bhattacharya, S., & Chaudhury, S. (2010). Accumulation of lead and zinc in earthworm Lampito mauritii (Kinberg): effect on survival, growth and acetylcholinesterase activity. Recent Research in Science and Technology, 2(4), 46–53.

    CAS  Google Scholar 

  • Maity, S., Roy, S., Bhattacharya, S., & Chaudhury, S. (2011). Metallothionein responses in the earthworm Lampito mauritii (Kinberg) exposed to lead and zinc: a biomarker of metal contamination. European Journal of Soil Biology, 47(1), 69–71. https://doi.org/10.1016/j.ejsobi.2010.10.001.

    Article  CAS  Google Scholar 

  • Ministry for Land Management (2004). Act No. 220/2004. Protection and agricultural land use. In Slovak (Annex 2, Part 96), Bratislava SR.

  • Muposhi, V. K., Utete, B., Sithole-Niang, I., & Mukangenyama, S. (2015). Active biomonitoring of a subtropical river using glutathione-S-transferase (GST) and heat shock proteins (HSP 70) in Oreochromis niloticus as surrogate biomarkers of metal contamination. Water SA, 41(3), 425–431. https://doi.org/10.4314/wsa.v41i3.15.

    Article  CAS  Google Scholar 

  • Peakall, D. (1994). The role of biomarkers in environmental assessment. Ecotoxicology, 3(3), 157–160. https://doi.org/10.1007/BF00117080.

    Article  CAS  Google Scholar 

  • Radu, M., Munteanu, M. C., Petrache, S., Serban, A. I., Dinu, D., Hermenean, A., Sima, C., & Dinischiotu, A. (2010). Depletion of intracellular glutathione and increased lipid peroxidation mediate cytotoxicity of hematite nanoparticles in MRC-5 cells. Acta Biochimia Polonica, 57(3), 355–360.

    CAS  Google Scholar 

  • Rapant, S., & Kordík, J. (2003). An environmental risk assessment map of the Slovak Republic: application of data from geochemical atlases. Environmental Geology, 44(4), 400–407. https://doi.org/10.1007/s00254-003-0772-7.

    Article  CAS  Google Scholar 

  • Rapant, S., Bodiš, D., Vrana, K., Cvečková, V., Kordík, J., Krčmová, K., & Slaninka, I. (2008). Geochemical atlas of Slovakia and examples of its applications to environmental problems. Environmental Geology, 57(1), 99–110.

    Article  Google Scholar 

  • Ribera, D., Narbonne, J. F., Arnaud, C., & Saint-Denis, M. (2001). Biochemical responses of the earthworm Eisenia fetida andrei exposed to contaminated artificial soil, effects of carbaryl. Soil Biology and Biochemistry, 33(7-8), 1123–1130. https://doi.org/10.1016/S0038-0717(01)00035-9.

    Article  CAS  Google Scholar 

  • Sanchez-Hernandez, J. C. (2006). Earthworms biomarkers in ecological risk assessment. Review of Environmental Contamination and Toxicology, 188, 85–126.

    CAS  Google Scholar 

  • Sefcík, P., Pramuka, S., & Gluch, A. (2008). Assessment of soil contamination in Slovakia according index of geoaccumulation. Agriculture, 54, 119–130.

    Google Scholar 

  • Šefčík, P., Pramuka, S., & Gluch, A. (2008). Assessment of soil contamination in Slovakia according index of geoaccumulation. Agriculture (Poľnohospodárstvo), 54(3), 119–130.

    Google Scholar 

  • Šestinova, O., Findoráková, L., Hančuľák, J., & Šestinová, L. (2015). Study of metal mobility and phytotoxicity in bottom sediments that have been influenced by former minig activities in eastern Slovakia. Environmental and Earth Science, 74(7), 6017–6025. https://doi.org/10.1007/s12665-015-4625-y.

    Article  Google Scholar 

  • Snedecor, G. W., & Cochran, W. G. (1967). Statistical methods, third ed. Ames: The Iowa State University Press.

    Google Scholar 

  • Sparks, D. L., Oage, A. L., Helmke, P. A., Loeppert, R. M., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T., & Sumner, M. E. (1996). Chemical methods (methods of soil analysis). Soil Science Society of America Journal, 3, 1390.

    Google Scholar 

  • Spurgeon, D. J., Lofts, S., Hankard, P. K., Toal, M., McLellan, D., Fishwick, S., & Svendsen, C. (2006). Effect of pH on metal speciation and resulting metal uptake and toxicity for earthworms. Environmental Toxicology and Chemistry, 25(3), 788–796. https://doi.org/10.1897/05-045R1.1.

    Article  CAS  Google Scholar 

  • Su, C., Jiang, L. Q., & Zhang, W. J. (2014). A review on heavy metal contamination in the soil worldwide: situation, impact and remediation techniques. Environmental Skeptics & Critics, 3, 24–38.

    Google Scholar 

  • van der Oost, R., Lopes, S. C. C., Komen, H., Satumalay, K., van den Bos, R., Heida, H., & Verrneuler, V. (1998). Assessment of environmental quality and inland water pollution using biomarker responses in caged carp (Cyprinus carpio): use of a bioactivation:detoxification ratio as a biotransformation index (BTI). Marine Environmental Research, 46(1-5), 315–319. https://doi.org/10.1016/S0141-1136(97)00096-2.

    Article  Google Scholar 

  • van Gestel, C. A., Koolhaas, J. E., Hamers, T., van Hoppe, M., van Roovert, M., Korsman, C., & Reinecke, S. A. (2009). Effects of metal pollution on earthworm communities in a contaminated floodplain area: linking biomarker, community and functional responses. Environmental Pollution, 157(3), 895–903. https://doi.org/10.1016/j.envpol.2008.11.002.

    Article  Google Scholar 

  • Vašková, J., Vaško, L., & Kron, I. (2012). Oxidative processes and antioxidative metalloenzymes. In M. A. El-Missiry (Ed.), Antioxidant enzyme (pp. 19–58) Novi Sad: In Tech. https://doi.org/10.5772/50995.

  • Zhang, X., Lua, Y., Shia, Y., Chena, C., Yang, Z., Lid, Y., & Fenga, Y. (2009). Antioxidant and metabolic responses induced by cadmium and pyrene in the earthworm Eisenia fetida in two different systems: contact and soil tests. Chemical Ecology, 25(3), 205–215.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Slovak Academic Information Agency, Slovakia, for financial support as a fellowship grant to SM, which enabled them to carry out the present investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sulata Maity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maity, S., Poráčová, J., Dey, P. et al. Antioxidant responses in the earthworm Aporrectodea caliginosa of eastern Slovakia: application of principal component analysis as a tool to identify metal contaminated areas. Environ Monit Assess 190, 21 (2018). https://doi.org/10.1007/s10661-017-6377-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6377-5

Keywords

Navigation