Skip to main content

Advertisement

Log in

Combining an experimental study and ANFIS modeling to predict landfill leachate transport in underlying soil—a case study in north of Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In the contemporary world, urbanization and progressive industrial activities increase the rate of waste material generated in many developed countries. Municipal solid waste landfills (MSWs) are designed to dispose the waste from urban areas. However, discharged landfill leachate, the soluble water mixture that filters through solid waste landfills, can potentially migrate into the soil and affect living organisms by making harmful biological changes in the ecosystem. Due to well-documented landfill problems involving contamination, it is necessary to investigate the long-term influence of discharged leachate on the consistency of the soil beds beneath MSW landfills. To do so, the current study collected vertical deep core samples from different locations in the same unlined landfill. The impacts of effluent leachate on physical and chemical properties of the soil and its propagation depth were studied, and the leachate–transport pattern between successive boreholes was predicted by a developed mathematical model using an adaptive neuro-fuzzy inference system (ANFIS). The decomposition of organic leachate admixtures in the landfill yield is to produce organic acids as well as carbon dioxide, which diminishes the pH level of the landfill soil. The chemical analysis of discharged leachate in the soil samples showed that the concentrations of heavy metals are much lower than those of chloride, COD, BOD5, and bicarbonate. Using linear regression and mean square errors between the measured and predicted data, the accuracy of the proposed ANFIS model has been validated. Results show a high correlation between observed and predicated data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Asadi, A., Shariatmadari, N., Moayedi, H., & Huat, B. B. (2011). Effect of MSW leachate on soil consistency under influence of electrochemical forces induced by soil particles. International Journal of Electrochemical Science, 6, 2344–2351.

    CAS  Google Scholar 

  • Bakis, R., & Tuncan, A. (2011). An investigation of heavy metal and migration through groundwater from the landfill area of Eskisehir in Turkey. Environmental Monitoring and Assessment, 176(1–4), 87–98. https://doi.org/10.1007/s10661-010-1568-3.

    Article  Google Scholar 

  • Beena, K., & George, M. (2010). Contaminant transport from MSW landfill: a case study.

    Google Scholar 

  • Breza-Boruta, B., Lemanowicz, J., & Bartkowiak, A. (2016). Variation in biological and physicochemical parameters of the soil affected by uncontrolled landfill sites. Environmental Earth Sciences, 75(3), 1–13. https://doi.org/10.1007/s12665-015-4955-9.

    Article  CAS  Google Scholar 

  • Chai, J.-C., Onitsuk, K., & Hayashi, S. (2009). Cr(VI) concentration from batch contact/tank leaching and column percolation test using fly ash with additives. Journal of Hazardous Materials, 166(1), 67–73. https://doi.org/10.1016/j.jhazmat.2008.11.010.

    Article  CAS  Google Scholar 

  • Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2013). Applied multiple regression/correlation analysis for the behavioral sciences: Routledge.

  • de Gracia, A., Fernández, C., Castell, A., Mateu, C., & Cabeza, L. F. (2015). Control of a PCM ventilated facade using reinforcement learning techniques. Energy and Buildings, 106, 234–242. https://doi.org/10.1016/j.enbuild.2015.06.045.

    Article  Google Scholar 

  • Dermont, G., Bergeron, M., Mercier, G., & Richer-Lafleche, M. (2008). Soil washing for metal removal: a review of physical/chemical technologies and field applications. Journal of Hazardous Materials, 152(1), 1–31. https://doi.org/10.1016/j.jhazmat.2007.10.043.

    Article  CAS  Google Scholar 

  • Ebrahimi, A., Najafpour, G. D. (2016). Biological treatment processes: suspended growth vs. attached growth. Iran Journal of Energy and Environment, 7(2), 114–123. https://doi.org/10.5829/idosi.ijee.2016.07.02.05.

  • Ebrahimi, M., Gerber, E. L., & Rockaway, T. D. (2017a). Temporal performance assessment of wastewater treatment plants by using multivariate statistical analysis. Journal of Environmental Management, 193, 234–246. https://doi.org/10.1016/j.jenvman.2017.02.027.

  • Ebrahimi, A., Najafpour, G., & Nikzad, M. (2017b). Evaluation of treatability of high strength wastewater in a three stage-rotating biological contactor. Journal of Environmental Engineering and Landscape Management, 25(3), 234–240. http://dx.doi.org/10.3846/16486897.2016.1223083.

  • El-Salam, M. M. A., & Abu-Zuid, G. I. (2014). Impact of landfill leachate on the groundwater quality: a case study in Egypt. Journal of Advanced Research, 6(4), 579–586.

    Article  Google Scholar 

  • Fang, H. Y., & Daniels, J. L. (2006). Introductory geotechnical engineering: an environmental perspective: CRC Press.

  • Fernández, D. S., Puchulu, M. E., & Georgieff, S. M. (2014). Identification and assessment of water pollution as a consequence of a leachate plume migration from a municipal landfill site (Tucumán, Argentina). Environmental Geochemistry and Health, 36(3), 489–503. https://doi.org/10.1007/s10653-013-9576-1.

    Article  Google Scholar 

  • George, M., & Beena, K. (2011). Geotechnical characteristics of leachate-contaminated lateratic soil. Carbon (TOC), 5500(5580), 8370.

    Google Scholar 

  • Gholami, M., Kebria, D. Y., & Mahmudi, M. (2014). Electrokinetic remediation of perchloroethylene-contaminated soil. International journal of Environmental Science and Technology, 11(5), 1433–1438. https://doi.org/10.1007/s13762-014-0555-6.

    Article  CAS  Google Scholar 

  • Han, D., Tong, X., Jin, M., Hepburn, E., Tong, C., & Song, X. (2013). Evaluation of organic contamination in urban groundwater surrounding a municipal landfill, Zhoukou, China. Environmental Monitoring and Assessment, 185(4), 3413–3444. https://doi.org/10.1007/s10661-012-2801-z.

    Article  CAS  Google Scholar 

  • Hogland, W., Marques, M., & Nimmermark, S. (2004). Landfill mining and waste characterization: a strategy for remediation of contaminated areas. Journal of Material Cycles and Waste Management, 6(2), 119–124.

    Article  CAS  Google Scholar 

  • Hutchings, J., Hammel, J., & Osiensky, J. (1998). Nitrogen leaching from unlined cull-onion landfills. Journal of Environmental Quality, 27(5), 1254–1260. https://doi.org/10.2134/jeq1998.00472425002700050034x.

    Article  CAS  Google Scholar 

  • Ihara, I., Kanamura, K., Shimada, E., & Watanabe, T. (2004). High gradient magnetic separation combined with electrocoagulation and electrochemical oxidation for the treatment of landfill leachate. IEEE Transactionson Applied Superconductivity, 14(2), 1558–1560. https://doi.org/10.1109/TASC.2004.830706.

    Article  CAS  Google Scholar 

  • Jang, J. S. R. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems. Man and Cybernetics, 23(3), 665–685. https://doi.org/10.1109/21.256541.

    Article  Google Scholar 

  • Johnson, R. L., Cherry, J. A., & Pankow, J. F. (1989). Diffusive contaminant transport in natural clay: a field example and implications for clay-lined waste disposal sites. Environmental Science and Technology, 23(3), 340–349.

    Article  CAS  Google Scholar 

  • Khairul, M., Hossain, A., Saidur, R., & Alim, M. (2014). Prediction of heat transfer performance of CuO/water nanofluids flow in spirally corrugated helically coiled heat exchanger using fuzzy logic technique. Computers & Fluids, 100, 123–129. https://doi.org/10.1016/j.compfluid.2014.05.007.

    Article  CAS  Google Scholar 

  • Lake, C. B., & Rowe, R. K. (2005). The 14-year performance of a compacted clay liner used as part of a composite liner system for a leachate lagoon. Geotechnical and Geological Engineering, 23(6), 657–678. https://doi.org/10.1007/s10706-004-8815-8.

    Article  Google Scholar 

  • Lee, J. Y., Cheon, J. Y., Kwon, H. P., Yoon, H. S., Lee, S. S., & Kim, J. H. (2006). Attenuation of landfill leachate at two uncontrolled landfills. Environmental Geology, 51(4), 581–593. https://doi.org/10.1007/s00254-006-0353-7.

    Article  CAS  Google Scholar 

  • Marzougui, A., & Mammou, A. B. (2006). Impacts of the dumping site on the environment: case of the Henchir El Yahoudia Site, Tunis, Tunisia. Comptes Rendus Geoscience, 338(16), 1176–1183. https://doi.org/10.1016/j.crte.2006.09.020.

    Article  CAS  Google Scholar 

  • Maskall, J., Whitehead, K., & Thornton, I. (1995). Heavy metal migration in soils and rocks at historical smelting sites. Environmental Geochemistry and Health, 17(3), 127–138. https://doi.org/10.1007/BF00126081.

    Article  CAS  Google Scholar 

  • Masoud Goharimanesh, A. A. A., & Naghibi-Sistani, M.-B. (2015). Combining the principles of fuzzy logic and reinforcement learning for control of dynamic systems. Journal of Applied and Computational Sciences in Mechanics, 27(1), 1–14.

    Google Scholar 

  • Mishra, H., Rathod, M., Karmakar, S., & Kumar, R. (2016). A framework for assessment and characterisation of municipal solid waste landfill leachate: an application to the Turbhe landfill, Navi Mumbai, India. Environmental Monitoring and Assessment, 188(6), 1–23.

    Article  CAS  Google Scholar 

  • Mor, S., Ravindra, K., Dahiya, R., & Chandra, A. (2006). Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site. Environmental Monitoring and Assessment, 118(1–3), 435–456. https://doi.org/10.1007/s10661-006-1505-7.

    Article  CAS  Google Scholar 

  • Mulligan, C., Yong, R., & Gibbs, B. (2001). Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering Geology, 60(1), 193–207. https://doi.org/10.1016/S0013-7952(00)00101-0.

    Article  Google Scholar 

  • Qin, X. S., Huang, G. H., Sun, W., & Chakma, A. (2008). Optimization of remediation operations at petroleum-contaminated sites through a simulation-based stochastic-MCDA approach. Energy Sources Part a-Recovery Utilization and Environmental Effects, 30(14–15), 1300–1326. https://doi.org/10.1080/15567030801928623.

    Article  CAS  Google Scholar 

  • Quaghebeur, M., Laenen, B., Geysen, D., Nielsen, P., Pontikes, Y., & Van Gerven, T. (2013). Characterization of landfilled materials: screening of the enhanced landfill mining potential. Journal of Cleaner Production, 55, 72–83.

    Article  CAS  Google Scholar 

  • Regadío, M., Ruiz, A., De Soto, I., Rastrero, M. R., Sanchez, N., & Gismera, M. (2012). Pollution profiles and physicochemical parameters in old uncontrolled landfills. Waste Management, 32(3), 482–497. https://doi.org/10.1016/j.wasman.2011.11.008.

    Article  Google Scholar 

  • Rowe, R. K., Queigley, R. M., & Booker, J. R. (1996). Book review: Clayey barrier systems for waste disposal facilities. Environmental Pollution, 91(1), 131–131.

    Google Scholar 

  • Schoenholtz, S. H., Van Miegroet, H., & Burger, J. (2000). A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities. Forest Ecology and Management, 138(1), 335–356. https://doi.org/10.1016/S0378-1127(00)00423-0.

    Article  Google Scholar 

  • Seyyedalipour, S., Kebria, D. Y., & Dehestani, M. (2015). Effects of recycled paperboard mill wastes on the properties of non-load-bearing concrete. International journal of Environmental Science and Technology, 12(11), 3627–3634. https://doi.org/10.1007/s13762-015-0879-x.

    Article  CAS  Google Scholar 

  • Shamshirband, S., Malvandi, A., Karimipour, A., Goodarzi, M., Afrand, M., & Petković, D. (2015). Performance investigation of micro- and nano-sized particle erosion in a 90° elbow using an ANFIS model. Powder Technology, 284, 336–343. https://doi.org/10.1016/j.powtec.2015.06.073.

    Article  CAS  Google Scholar 

  • Sheikholeslami, M., Sheykholeslami, F. B., Khoshhal, S., Mola-Abasia, H., Ganji, D. D., & Rokni, H. B. (2014). Effect of magnetic field on Cu–water nanofluid heat transfer using GMDH-type neural network. Neural Computing and Applications, 25(1), 171–178. https://doi.org/10.1007/s00521-013-1459-y.

    Article  Google Scholar 

  • Sunil, B. M., Shrihari, S., & Nayak, S. (2008) Soil-leachate interaction and their effects on hydraulic conductivity and compaction characteristics. In 12th International Conference on Computer Methods and Advances in Geomechanics,3, 2380–2386.

  • Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: an introduction (vol. 1): Cambridge Univ Press.

  • Tremblay, L., Lefebvre, R., Paradis, D., & Gloaguen, E. (2014). Conceptual model of leachate migration in a granular aquifer derived from the integration of multi-source characterization data (St-Lambert, Canada). Hydrogeology Journal, 22(3), 587–608.

    Article  Google Scholar 

  • Wang, J., Yan, Z., Wang, M., Li, M., & Dai, Y. (2013). Multi-objective optimization of an organic Rankine cycle (ORC) for low grade waste heat recovery using evolutionary algorithm. Energy Conversion and Management, 71, 146–158. https://doi.org/10.1016/j.enconman.2013.03.028.

    Article  Google Scholar 

  • Wijesekara, S. S. R. M. D. H. R., Mayakaduwa, S. S., Siriwardana, A. R., Silva, N., Basnayake, B. F. A., & Kawamoto, K. (2014). Fate and transport of pollutants through a municipal solid waste landfill leachate in Sri Lanka. [journal article]. Environmental Earth Sciences, 72(5), 1707–1719.

    CAS  Google Scholar 

  • Woodbury, P. B. (1992). Trace elements in municipal solid waste composts: a review of potential detrimental effects on plants, soil biota, and water quality. Biomass and Bioenergy, 3(3), 239–259. https://doi.org/10.1016/0961-9534(92)90029-P.

    Article  CAS  Google Scholar 

  • Xie, H. J., Chen, Y. M., Zhan, L. T., Chen, R. P., Chen, R. H., Tang, X. W., & Ke, H. (2009). Investigation of migration of pollutant at the base of Suzhou Qizishan landfill without a liner system. Journal of Zhejiang University-Science A, 10(3), 439–449. https://doi.org/10.1631/jzus.A0820299.

    Article  CAS  Google Scholar 

  • Xie, H. J., Chen, Y. M., Thomas, H. R., Sedighi, M., Masum, S. A., & Ran, Q. H. (2016). Contaminant transport in the sub-surface soil of an uncontrolled landfill site in China: site investigation and two-dimensional numerical analysis. Environmental Science and Pollution Research, 23(3), 2566–2575.

    Article  CAS  Google Scholar 

  • Yanful, E. K., Quigley, R. M., & Nesbitt, H. W. (1988). Heavy metal migration at a landfill site, Sarnia, Ontario, Canada—2: metal partitioning and geotechnical implications. Applied Geochemistry, 3(6), 623–629. https://doi.org/10.1016/0883-2927(88)90094-7.

    Article  CAS  Google Scholar 

  • Yochim, A., Zytner, R. G., McBean, E. A., & Endres, A. L. (2013). Estimating water content in an active landfill with the aid of GPR. Waste Management, 33(10), 2015–2028. https://doi.org/10.1016/j.wasman.2013.05.020.

    Article  Google Scholar 

  • Yousefi Kebria, D., Moafimadani, S. R., & Goli, Y. (2015). Laboratory investigation of the effect of crumb rubber on the characteristics and rheological behaviour of asphalt binder. Road Materials and Pavement Design, 16(4), 946–956.

    Article  CAS  Google Scholar 

  • Zadeh, L. A. (1997). Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems, 90(2), 111–127. https://doi.org/10.1016/S0165-0114(97)00077-8.

    Article  Google Scholar 

  • Zadeh, L. A. (2015). The information principle. Information Sciences, 294, 540–549. https://doi.org/10.1016/j.ins.2014.09.026.

    Article  Google Scholar 

  • Zhan, T. L., Chen, Y., & Ling, W. (2008). Shear strength characterization of municipal solid waste at the Suzhou landfill, China. Engineering Geology, 97(3), 97–111. https://doi.org/10.1016/j.enggeo.2007.11.006.

    Article  Google Scholar 

  • Zhan, T. L. T., Guan, C., Xie, H. J., & Chen, Y. M. (2014). Vertical migration of leachate pollutants in clayey soils beneath an uncontrolled landfill at Huainan, China: a field and theoretical investigation. Science of the Total Environment, 470–471, 290–298. https://doi.org/10.1016/j.scitotenv.2013.09.081.

    Article  Google Scholar 

  • Zhang, W. J., & Qiu, Q. W. (2010). Analysis on contaminant migration through vertical barrier walls in a landfill in China. Environmental Earth Sciences, 61(4), 847–852. https://doi.org/10.1007/s12665-009-0399-4.

    Article  CAS  Google Scholar 

  • Zhang, L., & Zhang, B. (1999). A geometrical representation of McCulloch-Pitts neural model and its applications. IEEE Transactions on Neural Networks, 10(4), 925–929. https://doi.org/10.1109/72.774263.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yousefi Kebria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefi Kebria, D., Ghavami, M., Javadi, S. et al. Combining an experimental study and ANFIS modeling to predict landfill leachate transport in underlying soil—a case study in north of Iran. Environ Monit Assess 190, 26 (2018). https://doi.org/10.1007/s10661-017-6374-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6374-8

Keywords

Navigation