Skip to main content
Log in

Mobility of Pb, Zn, Cu and As in disturbed forest soils affected by acid rain

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Early efforts at remediation of contaminated soils involve overturn or removal of the uppermost soil horizons. We find that such disruption is counterproductive, as it actually increases the mobility of the heavy metals involved. In our study, we sought to replicate in a controlled manner this commonly used remediation strategy and measure Pb, Zn, Cu and As concentrations in all soil horizons—both prior to and 1 year after disruption by trenching. BCR analyses (sequential leaching) indicate that Pb is affected to the greatest degree and is most highly mobile; however, Zn and As remain insoluble, thus partially ameliorating the detrimental effect. Differences in vegetation cover (i.e. spruce vs. beech forest) have little influence on overall element mobility patterns. The Krušné hory (Ore Mts., Czech Republic) study area is one of the more heavily contaminated areas in Central Europe, and thus the results reported here are applicable to areas affected by brown-coal-burning power plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Černý, J. (1993). Atmospheric deposition in the Krusne hory Mts. Preliminary results of throughfall measurements. Acta Universitatis Carolinae - Geologica, 1–2.

  • Černý, J., & Pačes, T. (Eds.). (1995). Acidification in the Black Triangle Region—ACID REIGN’ 95?: 5th International Conference on Acid Deposition Science and Policy. Prague: Czech Geological Survey.

    Google Scholar 

  • Dambrine, E., Kinkor, V., Jehlicka, J., & Gelhaye, D. (1993). Fluxes of dissolved mineral elements through a forest ecosystem submitted to extremely high atmospheric pollution inputs (Czech Republic). Annals des Science Forest, 50, 147–157.

    Article  Google Scholar 

  • Dumat, C., Chiquet, A., Gooddy, D., Aubry, E., Morin, G., Juillot, F., & Benedetti, M. F. (2001). Metal ion geochemistry in smelter impacted soils and soil solutions. Bulletin La Societe Geologique France, 172, 539–548.

    Article  CAS  Google Scholar 

  • Ferrier, R. C., Jenkins, A., Wright, R. F., Schöpp, W., & Barth, H. (2016). Assessment of recovery of European surface waters from acidification 1970-2000: an introduction to the Special Issue. Hydrology and Earth System Sciences, 5, 274–282.

    Article  Google Scholar 

  • Cháb, J., Breiter, K., Fatka, O., Hladil, J., Kalvoda, J., Šimůnek, Z., Štorch, P., Vašíček, Z., Zajíc, J., Zapletal, J., et al. (2010). Outline of the geology of the Bohemian Massif: the basement rocks and their carboniferous and Permian cover. Prague: Czech Geological Survey.

    Google Scholar 

  • Chrástný, V., Vaněk, A., Teper, L., Cabala, J., Procházka, J., Pechar, L., Drahota, P., Penížek, V., Komárek, M., & Novák, M. (2012). Geochemical position of Pb, Zn and Cd in soils near the Olkusz mine/smelter, South Poland: effects of land use, type of contamination and distance from pollution source. Environmental Monitoring and Assessment, 184, 2517–2536.

    Article  Google Scholar 

  • ISO 11274 (1998). Soil quality—Determination of the water-retention characteristic.

  • ISO 11272 (2017). Soil quality—Determination of dry bulk density.

  • ISO 11508 (1998). Soil quality—Determination of particle density.

  • Janoušek, V., Farrow, C. M., & Erban, V. (2006). Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology, 47, 1255–1259.

    Article  Google Scholar 

  • Janoušek, V., Moyen, J.-F., Martin, H., Erban, V., & Farrow, C. (2016). Geochemical modelling of igneous processes—principles and recipes in R language: bringing the power of R to a geochemical community. Berlin, Heidelberg: Springer.

    Book  Google Scholar 

  • Kodešová, R., Vignozzi, N., Rohosková, M., Hájková, T., Kocárek, M., Pagliai, M., Kozák, J., & Simůnek, J. (2009). Impact of varying soil structure on transport processes in different diagnostic horizons of three soil types. Journal of Contaminant Hydrology, 104, 107–125.

    Article  Google Scholar 

  • Kubelka, L., Karásek, A., Rybář, V., Badalík, V., & Slodičák, M. (1993). Forest regeneration in the heavily polluted NE “Krušné Hory” Mountains. Prague: Czech Ministry of Agriculture in AGROSPOJ.

    Google Scholar 

  • Lamb, D. T., Ming, H., Megharaj, M., & Naidu, R. (2009). Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. Journal of Hazardous Materials, 171, 1150–1158.

    Article  CAS  Google Scholar 

  • Mihaljevič, M., Ettler, V., Šebek, O., Drahota, P., Strnad, L., Procházka, R., Zeman, J., & Sracek, O. (2010). Alteration of arsenopyrite in soils under different vegetation covers. Science Total Environment, 408.

  • Moldan, B., & Schnoor, J. L. (1992). Czechoslovakia examining a critically ill environment. Environmental Science & Technology, 26, 14–21.

    Article  CAS  Google Scholar 

  • Navrátil, T., Shanley, J. B., Rohovec, J., Oulehle, F., Šimeček, M., Houška, J., & Cudlín, P. (2016). Soil mercury distribution in adjacent coniferous and deciduous stands highly impacted by acid rain in the Ore Mountains, Czech Republic. Applied Geochemistry, 75, 63–75.

    Article  Google Scholar 

  • Novák, M., Bottrell, S. H., Groscheová, H., Buzek, F., & Černý, J. (1995). Sulphur isotope characteristics of two north Bohemian forest catchments. Water, Air, & Soil Pollution, 85, 1641–1646.

    Article  Google Scholar 

  • Novák, M., Buzek, F., Harrison, A. F., Přechová, E., Jačková, I., & Fottová, D. (2003). Similarity between C, N and S stable isotope profiles in European spruce forest soils: implications for the use of δ34S as a tracer. Applied Geochemistry, 18, 765–779.

    Article  Google Scholar 

  • Novák, M., Kirchner, J. W., Groscheová, H., Havel, M., Černý, J., Krejčí, R., & Buzek, F. (2000). Sulfur isotope dynamics in two central European watersheds affected by high atmospheric deposition of SOx. Geochimica et Cosmochimica Acta, 64, 367–383.

    Article  Google Scholar 

  • Oulehle, F., Hofmeister, J., Cudlín, P., & Hruška, J. (2006). The effect of reduced atmospheric deposition on soil and soil solution chemistry at a site subjected to long-term acidification, Načetín, Czech Republic. Science Total Environment, 370, 532–544.

    Article  CAS  Google Scholar 

  • Oulehle, F., Hofmeister, J., & Hruška, J. (2007). Modeling of the long-term effect of tree species (Norway spruce and European beech) on soil acidification in the Ore Mountains. Ecological Modelling, 204, 359–371.

    Article  Google Scholar 

  • Oulehle, F., & Hruška, J. (2005). Tree species (Picea abies and Fagus sylvatica) effects on soil water acidification and aluminium chemistry at sites subjected to long-term acidification in the Ore Mts., Czech Republic. Journal of Inorganic Biochemistry, 99, 1822–1829.

    Article  CAS  Google Scholar 

  • Pansu, M., & Gautheyrou, J. (2006). Handbook of soil analysis. Berlin, Heidelberg: Springer.

    Book  Google Scholar 

  • Sutherland, R. A., & Tack, F. M. (2002). Determination of Al, Cu, Fe, Mn, Pb and Zn in certified reference materials using the optimized BCR sequential extraction procedure. Analytica Chimica Acta, 454, 249–257.

    Article  CAS  Google Scholar 

  • Udatný, M., Mihaljevič, M., Sebek, O., & Šebek, O. (2014). Release of mobile forms of hazardous elements from glassworks fly ash into soils. Environmental Geochemistry and Health, 36, 855–866.

    Article  Google Scholar 

  • Weiss, D. (1983). Methods of chemical analysis of mineral resources. Prague: Czech Geological Survey.

    Google Scholar 

  • Zuna, M., Mihaljevič, M., Šebek, O., Ettler, V., Handley, M., Navrátil, T., & Goliáš, V. (2011). Recent lead deposition trend as recorded by peat bogs and tree rings. Atmospheric Environment, 45, 4950–4958.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to Marie Fayadová for help with trace elements analyses, Ondřej Šebek for ICP-OES measurements. Dr. John M. Hora is thanked for revision of the English in the manuscript. We are grateful to anonymous reviewer and Dr. J. A. Elvir for editorial handling.

Funding

This study was funded by the Czech Science Foundation (13-17501S) and Operational Programme Prague—Competitiveness (Project CZ.2.16/3.1.00/21516). MU was supported by the Grant Agency of the Charles University in Prague project No. 338811.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulia V. Kochergina.

Electronic supplementary material

ESM 1

The results of total and sequence analyses used for GCDkit calculations are given in an electronic Supplement (XLSX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochergina, Y.V., Udatný, M., Penížek, V. et al. Mobility of Pb, Zn, Cu and As in disturbed forest soils affected by acid rain. Environ Monit Assess 189, 570 (2017). https://doi.org/10.1007/s10661-017-6306-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6306-7

Keywords

Navigation