Skip to main content

Advertisement

Log in

Temporal integration of soil N2O fluxes: validation of IPNOA station automatic chamber prototype

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The assessment of nitrous oxide (N2O) fluxes from agricultural soil surfaces still poses a major challenge to the scientific community. The evaluations of integrated soil fluxes of N2O are difficult owing to their lower emissions when compared with CO2. These emissions are also sporadic as environmental conditions act as a limiting factor. A station prototype was developed to integrate annual N2O and CO2 emissions using an automatic chamber technique and infrared spectrometers within the LIFE project (IPNOA: LIFE11 ENV/IT/00032). It was installed from June 2014 to October 2015 in an experimental maize field in Tuscany. The detection limits for the fluxes were evaluated up to 1.6 ng N-N2O m2 s−1 and 0.3 μg C-CO2 m2 s−1. A cross-comparison carried out in September 2015 with the “mobile IPNOA prototype”; a high-sensibility transportable instrument already validated provided evidence of very similar values and highlighted flux assessment limitations according to the gas analyzers used. The permanent monitoring device showed that temporal distribution of N2O fluxes can be very large and discontinuous over short periods of less than 10 days and that N2O fluxes were below the detection limit of the instrumentation during approximately 70% of the measurement time. The N2O emission factors were estimated to 1.9% in 2014 and 1.7% in 2015, within the range of IPCC assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ambus, P., & Robertson, G. P. (1998). Automated near-continuous measurement of carbon dioxide and nitrous oxide fluxes from soil. Soil Science Society of America Journal, 62, 394–400.

    Article  CAS  Google Scholar 

  • Arah, J. R. M., Smith, K. A., Crichton, I. J., & Li, H. S. (1991). Nitrous oxide production and denitrification in Scottish arable soils. Journal of Soil Science, 42, 351–367. https://doi.org/10.1111/j.1365-2389.1991.tb00414.x.

    Article  CAS  Google Scholar 

  • Bessou, C., Mary, B., Leonard, J., Roussel, M., Grehan, E., & Gabrielle, B. (2010). Modelling soil compaction impacts on nitrous oxide emissions in arable fields. European Journal of Soil Science, 61, 348–363. https://doi.org/10.1111/j.1365-2389.2010.01243.x.

    Article  CAS  Google Scholar 

  • Bosco, S., Volpi, R., Di Nasso, N. N. O., Triana, F., Roncucci, N., Tozzini, C., Villani, R., Laville, P., Neri, S., Mattei, F., Virgili, G., Nuvoli, S., Fabbrini, L., & Bonari, E. (2015). LIFE plus IPNOA mobile prototype for the monitoring of soil N2O emissions from arable crops: First-year results on durum wheat. Italian Journal of Agronomy, 10, 124–131. https://doi.org/10.4081/ija.2015.669.

    Article  Google Scholar 

  • Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., & Zechmeister-Boltenstern, S. (2013). Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philosophical Transactions of the Royal Society B, Biological Sciences, 368. https://doi.org/10.1098/rstb.2013.0122.

  • Chadwick, D. R., Cardenas, L., Misselbrook, T. H., Smith, K. A., Rees, R. M., Watson, C. J., Mcgeough, K. L., Williams, J. R., Cloy, J. M., Thorman, R. E., & Dhanoa, M. S. (2014). Optimizing chamber methods for measuring nitrous oxide emissions from plot-based agricultural experiments. European Journal of Soil Science, 65, 295–307. https://doi.org/10.1111/ejss.12117.

    Article  CAS  Google Scholar 

  • Conen, F., & Smith, K. A. (2000). An explanation of linear increases in gas concentration under closed chambers used to measure gas exchange between soil and the atmosphere. European Journal of Soil Science, 51, 111–117. https://doi.org/10.1046/j.1365-2389.2000.00292.x.

    Article  CAS  Google Scholar 

  • Dalal, R. C., Wang, W., Robertson, G. P., & Parton, W. J. (2003). Nitrous oxide emission from Australian agricultural lands and mitigation options: A review. Soil Research, 41, 165–195.

    Article  CAS  Google Scholar 

  • Davidson, E. A., Keller, M., Erickson, H. E., Verchot, L. V., & Veldkamp, E. (2000). Testing a conceptual model of soil emissions of nitrous and nitric oxides. Bioscience, 50, 667–680. https://doi.org/10.1641/0006-3568(2000)050[0667:TACMOS]2.0.CO;2.

    Article  Google Scholar 

  • Davidson, E. A., Savage, L., Verchot, V., Navarro, R. (2002). Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agricultural and Forest Meteorology, 113(1-4), 21–37.

  • De Klein C., Harvey M., 2015. Nitrous oxide Chamber_Methodology_Guidelines July 2015 Edited by Cecile de Klein and Mike Harvey Version 1.1 http://globalresearchalliance.org/wp-content/uploads/2015/11/Chamber_Methodology_Guidelines_Final-V1.1-2015.pdf

  • Dobbie, K. E., McTaggart, I. P., & Smith, K. A. (1999). Nitrous oxide emissions from intensive agricultural systems: variations between crops and seasons, key driving variables, and mean emission factors. Journal of Geophysical Research, 104, 26891–26899. https://doi.org/10.1029/1999JD900378.

    Article  CAS  Google Scholar 

  • Fassbinder, J. J., Schultz, N. M., Baker, J. M., & Griffis, T. J. (2013). Automated, low-power chamber system for measuring nitrous oxide emissions. Journal of Environmental Quality, 42, 606–614. https://doi.org/10.2134/jeq2012.0283.

    Article  CAS  Google Scholar 

  • Flechard, C. R., Neftel, A., Jocher, M., Ammann, C., & Fuhrer, J. (2005). Bi-directional soil/atmosphere N2O exchange over two mown grassland systems with contrasting management practices. Global Change Biolology, 11, 2114–2127. https://doi.org/10.1111/j.1365-2486.2005.01056.x.

    Article  Google Scholar 

  • Flessa, H., Ruser, R., Schilling, R., Loftfield, N., Munch, J. C., Kaiser, E. A., & Beese, F. (2002). N2O and CH4 fluxes in potato fields: Automated measurement, management effects and temporal variation. Geoderma, 105, 307–325. https://doi.org/10.1016/S0016-7061(01)00110-0.

    Article  CAS  Google Scholar 

  • Forte, A., Fiorentino, N., Fagnano, M., & Fierro, A. (2017). Mitigation impact of minimum tillage on CO2 and N2O emissions from a Mediterranean maize cropped soil under low-water input management. Soil and Tillage Research, 166, 167–178. https://doi.org/10.1016/j.still.2016.09.014.

    Article  Google Scholar 

  • Groffman, P. M., Tiedje, J. M. (1991). Relationships between denitrification, CO2 production and air-filled porosity in soils of different texture and drainage. Soil Biology and Biochemistry, 23(3), 299–302.

  • Hensen, A., Groot, T. T., van den Bulk, W. C. M., Vermeulen, A. T., Olesen, J. E., & Schelde, K. (2006). Dairy farm CH4 and N2O emissions, from one square metre to the full farm scale. Agriculture, Ecosystems and Environment, 112, 146–152. https://doi.org/10.1016/j.agee.2005.08.014.

    Article  CAS  Google Scholar 

  • Hou, H., Chen, H., Cai, H., Yang, F., Li, D., & Wang, F. (2016). CO2 and N2O emissions from Lou soils of greenhouse tomato fields under aerated irrigation. Atmospheric Environment, 132, 69–76. https://doi.org/10.1016/j.atmosenv.2016.02.027.

    Article  CAS  Google Scholar 

  • Huang, Y., Zou, J., Zheng, X., Wang, Y., & Xu, X. (2004). Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios. Soil Biology and Biochemistry, 36, 973–981. https://doi.org/10.1016/j.soilbio.2004.02.009.

    Article  CAS  Google Scholar 

  • Huijing, H., Shihong, Y., Fangtong, W., Dan, L., & Junzeng, X. (2016). Controlled irrigation mitigates the annual integrative global warming potential of methane and nitrous oxide from the rice-winter wheat rotation systems in Southeast China. Ecological Engineering, 86, 239–246. https://doi.org/10.1016/j.ecoleng.2015.11.022.

    Article  Google Scholar 

  • Hutchinson, G., & Mosier, A. (1981). Improved soil cover method for field measurement of nitrous-oxide fluxes. Soil Science Society of America Journal, 45, 311–316.

    Article  CAS  Google Scholar 

  • IPCC. (2007). Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the IPCC. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), (996 pp). Cambridge: Cambridge University Press.

    Google Scholar 

  • ISPRA report (2014) Istituto Superiore per la Protezione e la Ricerca Ambientale. Italian Greenhouse Gas Inventory 1990–2012. National Inventory Report 2014. http://www.isprambiente.gov.it/en/publications/reports

  • Jones, S. K., Famulari, D., Di Marco, C. F., Nemitz, E., Skiba, U. M., Rees, R. M., & Sutton, M. A. (2011). Nitrous oxide emissions from managed grassland: A comparison of eddy covariance and static chamber measurements. Atmospheric Measurement Techniques, 4, 2179–2194. https://doi.org/10.5194/amt-4-2179-2011.

    Article  CAS  Google Scholar 

  • Klumpp, K., Bloor, J. M. G., Ambus, P., & Soussana, J.-F. (2011). Effects of clover density on N2O emissions and plant-soil N transfers in a fertilised upland pasture. Plant and Soil, 343, 97–107. https://doi.org/10.1007/s11104-010-0526-8.

    Article  CAS  Google Scholar 

  • Kutzbach, L., Schneider, J., Sachs, T., Giebels, M., Nykänen, H., Shurpali, N. J., Martikainen, P. J., Alm, J., & Wilmking, M. (2007). CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression. Biogeosciences, 4, 1005–1025.

    Article  CAS  Google Scholar 

  • Lal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123, 1–22. https://doi.org/10.1016/j.geoderma.2004.01.032.

    Article  CAS  Google Scholar 

  • Laville, P., Neri, S., Continanza, D., Ferrante, V. L., Bosco, S., & Virgili, G. (2015). Cross-validation of a mobile N2O flux prototype IPNOA using micrometeorological and chamber methods. Journal of Energy and Power Engineering, 9, 375–385. https://doi.org/10.17265/1934-8975/2015.04.007.

    CAS  Google Scholar 

  • Laville, P., Lehuger, S., Loubet, B., Chaumartin, F., & Cellier, P. (2011). Effect of management, climate and soil conditions on N2O and NO emissions from an arable crop rotation using high temporal resolution measurements. Agricultural and Forest Meteorology, 151, 228–240. https://doi.org/10.1016/j.agrformet.2010.10.008.

    Article  Google Scholar 

  • Lemke, R. L., Izaurralde, R. C., Nyborg, M., & Solberg, E. D. (1999). Tillage and N source influence soil-emitted nitrous oxide in the Alberta Parkland region. Canadian Journal of Soil Science, 79, 15–24. https://doi.org/10.4141/S98-013.

    Article  CAS  Google Scholar 

  • Linn, D., & Doran, J. (1984). Effect of water-filled pore-space on carbon-dioxide and nitrous-oxide production in tilled and nontilled soils. Soil Science Society of America Journal, 48, 1267–1272.

    Article  CAS  Google Scholar 

  • Livingston, G. P., & Hutchinson, G. L. (1995). Enclosure-based measurement of trace gas exchange: application and sources of error. In P. A. Matson & R. C. Harriss (Eds.), Biogenic trace gases: Measuring emissions from soil and water (pp. 14–50). Cambridge: Backwell Sci-ence.

    Google Scholar 

  • MacKenzie, A. F., Fan, M. X., & Cadrin, F. (1998). Nitrous oxide emission in three years as affected by tillage, corn-soybean-alfalfa rotations, and nitrogen fertilization. Journal of Environmental Quality, 27, 698–703.

    Article  CAS  Google Scholar 

  • Mammarella, I., Werle, P., Pihlatie, M., Eugster, W., Haapanala, S., Kiese, R., Markkanen, T., Rannik, U., & Vesala, T. (2010). A case study of eddy covariance flux of N2O measured within forest ecosystems: Quality control and flux error analysis. Biogeosciences, 7, 427–440.

    Article  CAS  Google Scholar 

  • Maris, S. C., Teira-Esmatges, M. R., & Catala, M. M. (2016). Influence of irrigation frequency on greenhouse gases emission from a paddy soil. Paddy and Water Environment, 14, 199–210. https://doi.org/10.1007/s10333-015-0490-2.

    Article  Google Scholar 

  • Moulin, A. P., Glenn, A., Tenuta, M., Lobb, D. A., Dunmola, A. S., & Yapa, P. (2014). Alternative transformations of nitrous oxide soil flux data to normal distributions. Canadian Journal of Soil Science, 94, 105–108. https://doi.org/10.4141/CJSS2013-008.

    Article  CAS  Google Scholar 

  • Neftel, A., Flechard, C., Ammann, C., Conen, F., Emmenegger, L., & Zeyer, K. (2007). Experimental assessment of N2O background fluxes in grassland systems. Tellus, 59B, 470–482.

    Article  CAS  Google Scholar 

  • Neftel, A., Ammann, C., Fischer, C., Spirig, C., Conen, F., Emmenegger, L., Tuzson, B., & Wahlen, S. (2010). N2O exchange over managed grassland: application of a quantum cascade laser spectrometer for micrometeorological flux measurements. Agricultural and Forest Meteorology, 150, 775–785. https://doi.org/10.1016/j.agrformet.2009.07.013.

    Article  Google Scholar 

  • Pihlatie, M., Rinne, J., Ambus, P., Pilegaard, K., Dorsey, J. R., Rannik, Ü., Markkanen, T., Launiainen, S., & Vesala, T. (2005). Nitrous oxide emissions from a beech forest floor measured by eddy covariance and soil enclosure techniques. Biogeosciences, 2, 377–387.

    Article  CAS  Google Scholar 

  • Owens, J., Clough, T. J., Laubach, J., Hunt, J. E., Venterea, R. T., & Phillips, R. L. (2016). Nitrous oxide fluxes, soil oxygen, and denitrification potential of urine- and non-urine-treated soil under different irrigation frequencies. Journal of Environmental Quality, 45, 1169–1177. https://doi.org/10.2134/jeq2015.10.0516.

    Article  CAS  Google Scholar 

  • Papen, H., & Butterbach-Bahl, K. (1999). A 3-year continuous record of nitrogen trace gas fluxes from untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany—1. N2O emissions. Journal of Geophysical Research-Atmospheres, 104, 18487–18503. https://doi.org/10.1029/1999JD900293.

    Article  CAS  Google Scholar 

  • Parkin, T., Meisinger, J., & Starr, J. (1989). Evaluation of statistical estimation methods for lognormally distributed variables—reply. Soil Science Society of America Journal, 53, 314–315.

    Article  Google Scholar 

  • Parkin, T., & Robinson, J. (1993). Statistical evaluation of median estimators for lognormally distributed variables. Soil Science Society of America Journal, 57, 317–323.

    Article  Google Scholar 

  • Rannik, Ü., Haapanala, S., Shurpali, N. J., Mammarella, I., Lind, S., Hyvönen, N., Peltola, O., Zahniser, M., Martikainen, P. J., Vesala, T. (2015). Intercomparison of fast response commercial gas analysers for nitrous oxide flux measurements under field conditions. Biogeosciences, 12(2), 415–432.

  • Rochette, P., & Eriksen-Hamel, N. S. (2008). Chamber measurements of soil nitrous oxide flux: are absolute values reliable? Soil Science Society of America Journal, 72, 331–342. https://doi.org/10.2136/sssaj2007.0215.

  • Saxton, K., Rawls, W., Romberger, J., & Papendick, R. (1986). Estimating generalized soil-water characteristics from texture. Soil Science Society of America Journal, 50, 1031–1036.

    Article  Google Scholar 

  • Schaufler, G., Kitzler, B., Schindlbacher, A., Skiba, U., Sutton, M. A., & Zechmeister-Boltenstern, S. (2010). Greenhouse gas emissions from European soils under different land use: Effects of soil moisture and temperature. European Journal of Soil Science, 61, 683–696. https://doi.org/10.1111/1.1365-2389.2010.01277.x.

    Article  CAS  Google Scholar 

  • Schlesinger, W. H. (2013). An estimate of the global sink for nitrous oxide in soils. Global Change Biology, 19, 2929–2931. https://doi.org/10.1111/gcb.12239.

    Article  Google Scholar 

  • Shurpali, N. J., Rannik, Ü., Jokinen, S., Lind, S., Biasi, C., Mammarella, I., Peltola, O., Pihlatie, M., Hyvönen, N., Räty, M., Haapanala, S., Zahniser, M., Virkajärvi, P., Vesala, T., & Martikainen, P. J. (2016). Neglecting diurnal variations leads to uncertainties in terrestrial nitrous oxide emissions. Scientific Reports, 6, 25739. https://doi.org/10.1038/srep25739.

    Article  CAS  Google Scholar 

  • Six, J., Ogle, S. M., Jay breidt, F., Conant, R. T., Mosier, A. R., & Paustian, K. (2004). The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Global Change Biology, 10, 155–160. https://doi.org/10.1111/j.1529-8817.2003.00730.x.

    Article  Google Scholar 

  • Smith, K. A., & Dobbie, K. E. (2001). The impact of sampling frequency and sampling times on chamber-based measurements of N2O emissions from fertilized soils. Global Change Biology, 7, 933–945. https://doi.org/10.1046/j.1354-1013.2001.00450.x.

    Article  Google Scholar 

  • Smith, K. A., Thomson, P. E., Clayton, H., McTaggart, I. P., & Conen, F. (1998). Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils. Atmospheric Environment, 32, 3301–3309. https://doi.org/10.1016/S1352-2310(97)00492-5.

    Article  CAS  Google Scholar 

  • Song, C., & Zhang, J. (2009). Effects of soil moisture, temperature, and nitrogen fertilization on soil respiration and nitrous oxide emission during maize growth period in northeast China. Acta Agriculturae Scandinavica Section B Soil and Plant Science, 59, 97–106. https://doi.org/10.1080/09064710802022945.

    CAS  Google Scholar 

  • Stehfest, E., & Bouwman, L. (2006). N2O and NO emission from agricultural fields and soils under natural vegetation: Summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 74, 207–228. https://doi.org/10.1007/s10705-006-9000-7.

    Article  CAS  Google Scholar 

  • Stoyan, H., De-Polli, H., Bohm, S., Robertson, G. P., & Paul, E. A. (2000). Spatial heterogeneity of soil respiration and related properties at the plant scale. Plant and Soil, 222, 203–214. https://doi.org/10.1023/A:1004757405147.

    Article  CAS  Google Scholar 

  • van der Weerden, T. J., Kelliher, F. M., & de Klein, C. A. M. (2012). Influence of pore size distribution and soil water content on nitrous oxide emissions. Soil Research, 50, 125–135. https://doi.org/10.1071/SR11112.

    Google Scholar 

  • Venterea, R. T., Spokas, K. A., & Baker, J. M. (2009). Accuracy and precision analysis of chamber-based nitrous oxide gas flux estimates. Soil Science Society of America Journal, 73, 1087–1093. https://doi.org/10.2136/sssaj2008.0307.

    Article  CAS  Google Scholar 

  • Vermue, A., Philippot, L., Munier-Jolain, N., Henault, C., & Nicolardot, B. (2013). Influence of integrated weed management system on N-cycling microbial communities and N2O emissions. Plant and Soil, 373, 501–514. https://doi.org/10.1007/s11104-013-1821-y.

    Article  CAS  Google Scholar 

  • Viveiros, F., Ferreira, T., Silva, C., Vieira, J. C., Gaspar, J. L., Virgili, G., & Amaral, P. (2015). Permanent monitoring of soil CO2 degassing at Furnas and Fogo volcanoes (Sao Miguel Island, Azores). In J. L. Gaspar, J. E. Guest, A. M. Duncan, F. Barriga, & D. K. Chester (Eds.), Volcanic geology of Sao Miguel Island (Azores archipelago) (pp. 271–288). Bath: Geological Soc Publishing House.

    Google Scholar 

  • Wagner, S. W., Reicosky, D. C., & Alessi, R. S. (1997). Regression models for calculating gas fluxes measured with a closed chamber. Agronomy Journal, 89, 279–284.

    Article  CAS  Google Scholar 

  • Wang, W., Dalal, R. C., Reeves, S. H., Butterbach-Bahl, K., & Kiese, R. (2011). Greenhouse gas fluxes from an Australian subtropical cropland under long-term contrasting management regimes. Global Change Biology, 17, 3089–3101. https://doi.org/10.1111/j.1365-2486.2011.02458.x.

    Article  Google Scholar 

  • Wang, K., Liu, C., Zheng, X., Pihlatie, M., Li, B., Haapanala, S., Vesala, T., Liu, H., Wang, Y., Liu, G., Hu, F. (2013). Comparison between eddy covariance and automatic chamber techniques for measuring net ecosystem exchange of carbon dioxide in cotton and wheat fields. Biogeosciences, 10(11), 6865–6877.

  • Weier, K., Doran, J., Power, J., & Walters, D. (1993). Denitrification and the dinitrogen nitrous-oxide ratio as affected by soil-water, available carbon, and nitrate. Soil Science Society of America Journal, 57, 66–72.

    Article  CAS  Google Scholar 

  • Wosten, J. H. M., Lilly, A., Nemes, A., & Le Bas, C. (1999). Development and use of a database of hydraulic properties of European soils. Geoderma, 90, 169–185. https://doi.org/10.1016/S0016-7061(98)00132-3.

  • Yao, Z., Zheng, X., Xie, B., Mei, B., Wang, R., Butterbach-Bahl, K., Zhu, J., & Yin, R. (2009). Tillage and crop residue management significantly affects N-trace gas emissions during the non-rice season of a subtropical rice-wheat rotation. Soil Biology and Biochemistry, 41, 2131–2140. https://doi.org/10.1016/j.soilbio.2009.07.025.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Laville.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laville, P., Bosco, S., Volpi, I. et al. Temporal integration of soil N2O fluxes: validation of IPNOA station automatic chamber prototype. Environ Monit Assess 189, 485 (2017). https://doi.org/10.1007/s10661-017-6181-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6181-2

Keywords

Navigation