Skip to main content
Log in

The application of high temporal resolution data in river catchment modelling and management strategies

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Modelling changes in river water quality, and by extension developing river management strategies, has historically been reliant on empirical data collected at relatively low temporal resolutions. With access to data collected at higher temporal resolutions, this study investigated how these new dataset types could be employed to assess the precision and accuracy of two phosphorus (P) load apportionment models (LAMs) developed on lower resolution empirical data. Predictions were made of point and diffuse sources of P across ten different sampling scenarios. Sampling resolution ranged from hourly to monthly through the use of 2000 newly created datasets from high frequency P and discharge data collected from a eutrophic river draining a 9.48 km2 catchment. Outputs from the two LAMs were found to differ significantly in the P load apportionment (51.4% versus 4.6% from point sources) with reducing precision and increasing bias as sampling frequency decreased. Residual analysis identified a large deviation from observed data at high flows. This deviation affected the apportionment of P from diffuse sources in particular. The study demonstrated the potential problems in developing empirical models such as LAMs based on temporally relatively poorly-resolved data (the level of resolution that is available for the majority of catchments). When these models are applied ad hoc and outside an expert modelling framework using extant datasets of lower resolution, interpretations of their outputs could potentially reduce the effectiveness of management decisions aimed at improving water quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE T Automat Contr, 19, 716–723. doi:10.1109/TAC.1974.1100705.

    Article  Google Scholar 

  • Anderson, T. W., & Darling, D. A. (1952). Asympotic theory of certain goodness of fit criteria based on stochastic processes. Annals of Mathematical Statistics, 23, 193–212.https://projecteuclid.org/euclid.aoms/1177729437.

    Article  Google Scholar 

  • Begum, S., Adnan, M., McClean, C. J., & Cresser, M. S. (2016). A critical re-evaluation of controls on spatial and seaonsal variations in nitrate concentrations in river waters throughout the river Derwent catchment in North Yorkshire, UK. Environmental Monitoring and Assessment, 188, 305. doi:10.1007/s10661-016-5305-4.

    Article  Google Scholar 

  • Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton, S. H., Jakeman, A. J., et al. (2013). Characterising performance of environmental models. Environmental Modelling and Software, 40, 1–20. doi:10.1016/j.envsoft.2012.09.011.

    Article  Google Scholar 

  • Bieroza, M. Z., & Heathwaite, A. L. (2015). Seasonal variation in phosphorus concentration-discharge hysteresis inferred from high-frequency in situ monitoring. Journal of Hydrology, 524, 333–347. doi:10.1016/j.jhydrol.2015.02.036.

    Article  CAS  Google Scholar 

  • Bieroza, M. Z., Heathwaite, A. L., Mullinger, N. J., & Keenan, P. O. (2014). Understanding nutrient biogeochemistry in agricultural catchments: The challenge of appropriate monitoring frequencies. Environ Sc: Processes Impacts, 16, 1676–1691. doi:10.1039/c4em00100a.

    CAS  Google Scholar 

  • Binzer, A., Guil, C., Rall, B. C., & Brose, U. (2016). Interactive effects of warming, eutrophication and size structure; impacts on biodiversity and food-web structure. Global Change Biology, 22(1), 220–227.

    Article  Google Scholar 

  • Bowes, M. J., Smith, J. T., Jarvie, H. P., & Neal, C. (2008). Modelling of phosphorus inputs to rivers from diffuse and point sources. Sci Total Environ, 395, 125–138. doi:10.1016/j.scitotenv.2008.01.054.

    Article  CAS  Google Scholar 

  • Bowes, M. J., Smith, J. T., Jarvie, H. P., Neal, C., & Barden, R. (2009). Changes in point and diffuse source phosphorus inputs to the river Frome (Dorset, UK) from 1966 to 2006. Sci Total Environ, 407, 1954–1966. doi:10.1016/j.scitotenv.2008.11.026.

    Article  CAS  Google Scholar 

  • Bowes, M. J., Neal, C., Jarvie, H. P., Smith, J. T., & Davies, H. N. (2010). Predicting phosphorus concentrations in British rivers resulting from the introduction of improved phosphorus removal from sewage effluent. Sci Total Environ, 408, 4239–4250. doi:10.1016/j.scitotenv.2010.05.016.

    Article  CAS  Google Scholar 

  • Bowes, M. J., Jarvie, H. P., Halliday, S. J., Skeffington, R. A., Wade, A. J., Loewenthal, M., et al. (2015). Characterising phosphorus and nitrate inputs to a rural river using high-frequency concentration-flow relationships. Sci Total Environ, 511, 608–620. doi:10.1016/j.scitotenv.2014.12.086.

    Article  CAS  Google Scholar 

  • Campbell, J. M., Jordan, P., & Arnscheidt, J. (2015). Using high-resolution phosphorus data to investigate mitigation measures in headwater river catchments. Hydrol Earth Syst Sc, 19, 453–464. doi:10.5194/hess-19-453-2015.

    Article  CAS  Google Scholar 

  • Carvalho, L., Maberly, S. C., May, L., Reynolds, C., Hughes, M., Brazier, R., et al. (2005). Risk Assessment Methodology for Determining Nutrient Impacts in Surface Freshwater Bodies. Bristol: Environment Agency.

  • Cassidy, R., & Jordan, P. (2011). Limitations of instantaneous water quality sampling in surface-water catchments: Comparison with near-continuous phosphorus time-series data. Journal of Hydrology, 405, 182–193. doi:10.1016/j.jhydrol.2011.05.020.

    Article  CAS  Google Scholar 

  • Chakravartty, A. (2010). Perspectivism, inconsistent models, and constrastive explanation. Studies in History and Philosophy of Science, 41, 405–412. doi:10.1016/j.shpsa.2010.10.007.

    Article  Google Scholar 

  • Chaudhary, A., & Hantush, M. M. (2017). Bayesian Monte Carlo and maximum likelihood approach for uncertainty estimation and risk management: Application to lake oxygen recovery model. Water Research, 108, 301–311. doi:10.1016/j.watres.2016.11.012.

    Article  CAS  Google Scholar 

  • Chen, D., Dahlgren, R. A., & Lu, J. (2013). A modified load apportionment model for identifying point and diffuse source nutrient inputs to rivers from stream monitoring data. Journal of Hydrology, 501, 25–34. doi:10.1016/j.jhydrol.2013.07.034.

    Article  CAS  Google Scholar 

  • Chen, D. J., Hu, M. P., Guo, Y., & Dahlgren, R. A. (2015). Reconstructing historical changes in phosphorus inputs to rivers from point and nonpoint sources in a rapidly developing watershed in eastern China, 1980-2010. Sci Total Environ, 533, 196–204. doi:10.1016/j.scitotenv.2015.06.079.

    Article  CAS  Google Scholar 

  • Core Team, R. (2014). R, a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Efron, B. (1979). Bootstrap methods: Another look at the Jacknife. The Annals of Statistics, 7, 1–26. doi:10.1214/aos/1176344552.

    Article  Google Scholar 

  • Eisenreich, S. J., Bannerman, R. T., & Armstrong, D. E. (1975). Simplified phosphorus analysis technique. Environmental Letters, 9, 45–53.

    Article  Google Scholar 

  • Feld, C. K., Birk, S., Bradley, D. C., Hering, D., Kail, J., Marzin, A., et al. (2011). From natural to degraded rivers and back again: A test of restoration ecology theory and practice. In G. Woodward (Ed.), Advances in ecological research 44 (pp. 120–209). Amsterdam: Elsevier.

    Google Scholar 

  • Fonseca, B. M., de Mendonça-Galvão, L., Padovesi-Fonseca, C., Monteiro de Abreu, L., & Fernandes, A. C. M. (2014). Nutrient baselines of Cerrado low-order streams: Comparing natural and impacted sites in Central Brazil. Environmental Monitoring and Assessment, 186, 19–33. doi:10.1007/s10661-013-3351-8.

    Article  CAS  Google Scholar 

  • Greene, S., Taylor, D., McElarney, Y. R., Foy, R. H., & Jordan, P. (2011). An evaluation of catchment-scale phosphorus mitigation using load apportionment modelling. Sci Total Environ, 409, 2211–2221. doi:10.1016/j.scitotenv.2011.02.016.

    Article  CAS  Google Scholar 

  • Jansons, V., Vagstad, N., Sudars, R., Deelstra, J., Dzalbe, I., & Kirsteina, D. (2002). Nutrient losses from point and diffuse agricultural sources in Latvia. Landbauforsch Volk, 52, 9–17.

    CAS  Google Scholar 

  • Jarvie, H. P., Neal, C., & Withers, P. J. A. (2006). Sewage-effluent phosphorus: A greater risk to river eutrophication than agricultural phosphorus? Sci Total Environ, 360, 246–253. doi:10.1016/j.scitotenv.2005.08.038.

    Article  CAS  Google Scholar 

  • Jarvie, H. P., Withers, P. J. A., Bowes, M. J., Palmer-Felgate, E. J., Harper, D. M., Wasiak, K., et al. (2010). Streamwater phosphorus and nitrogen across a gradient in rural-agricultural land use intensity. Agriculture, Ecosystems and Environment, 135, 238–252. doi:10.1016/j.agee.2009.10.002.

    Article  CAS  Google Scholar 

  • Jarvie, H. P., Sharpley, A. N., Withers, P. J. A., Scott, J. T., Haggard, B. E., & Neal, C. (2013). Phosphorus mitigation to control river eutrophication: Murky waters, inconvenient truths, and "postnormal" science. Journal of Environmental Quality, 42, 295–304. doi:10.2134/jeq2012.0085.

    Article  CAS  Google Scholar 

  • Jarvie, H. P., Sharpley, A. N., Spears, B., Buda, A. R., May, L., & Kleinman, P. J. A. (2014). Water quality remediation faces unprecedented challenges from "legacy phosphorus". Environmental Science & Technology, 47, 8997–8998. doi:10.1021/es403160ha.

    Article  Google Scholar 

  • Johnes, P. J. (2007). Uncertainties in annual riverine phosphorus load estimation: Impact of load estimation methodology, sampling frequency, baseflow index and catchment population density. Journal of Hydrology, 332, 241–258. doi:10.1016/j.jhydrol.2006.07.006.

    Article  Google Scholar 

  • Jordan, P., Arnscheidt, A., McGrogan, H., & McCormick, S. (2007). Characterising phosphorus transfers in rural catchments using a continuous bank-side analyser. Hydrol Earth Syst Sc, 11, 372–381.

    Article  CAS  Google Scholar 

  • Jordan, P., Melland, A., Mellander, P. E., Shortle, G., & Wall, D. (2012). The seasonality of phosporus transfers from land to water: Implications for trophic impacts and policy evaluation. Sci Total Environ, 434, 101–109. doi:10.1016/j.scitotenv.2011.12.070.

    Article  CAS  Google Scholar 

  • Kristensen, P., & Bøgestrand, J. (1996). Surface water quality monitoring. Denmark: National Environmental Research Institute.

    Google Scholar 

  • McDowell, R. W., Snelder, T., Littlejohn, R., Hickey, M., Cox, N., & Booker, D. J. (2011). State and potential management to improve water quality in an agricultural catchment relative to a natural baseline. Agriculture, Ecosystems and Environment, 144, 188–200. doi:10.1016/j.agee.2011.07.009.

    Article  CAS  Google Scholar 

  • Melland, A. R., Mellander, P. E., Murphy, P. N. C., Wall, D., Mechan, S., Shine, O., et al. (2012). Stream water quality in intensive cereal cropping catchments with regulated nutrient management. Environmental Science & Policy, 24, 58–70. doi:10.1016/j.envsci.2012.06.006.

    Article  CAS  Google Scholar 

  • Mellander, P. E., Jordan, P., Wall, D., Melland, A. R., Meehan, R., Kelly, C., et al. (2012). Delivery and impact bypass in a karst aquifer with high phosphorus source and pathway potential. Water Research, 46, 2225–2236. doi:10.1016/j.watres.2012.01.048.

    Article  CAS  Google Scholar 

  • Mellander, P. E., Melland, A. R., Murphy, P. N. C., Wall, D. P., Shortle, G., & Jordan, P. (2014). Coupling of surface water and groundwater nitrate-N dynamics in two permeable agricultural catchments. Journal of Agricultural Science, 152, S107–S124. doi:10.1017/S0021859614000021.

    Article  Google Scholar 

  • Moreno-Ostos, E., da Silva, S. L. R., de Vicente, I., & Cruz-Pizarro, L. (2007). Interannual and between-site variability in the occurrence of clear water phases in two shallow Mediterranean lakes. Aquatic Ecology, 41, 285–297. doi:10.1007/s10452-006-9072-0.

    Article  Google Scholar 

  • Murphy, S., Jordan, P., Mellander, P. E., & O'Flaherty, V. (2015). Quantifying faecal indicator organism hydrological transfer pathways and phases in agricultural catchments. Sci Total Environ, 520, 286–299. doi:10.1016/j.scitotenv.2015.02.017.

    Article  CAS  Google Scholar 

  • Neal, C., Jarvie, H. P., Williams, R., Love, A., Neal, M., Wickham, H., et al. (2010). Declines in phosphorus concentration in the upper river Thames (UK): Links to sewage effluent cleanup and extended end-member mixing analysis. Sci Total Environ, 408, 1315–1330. doi:10.1016/j.scitotenv.2009.10.055.

    Article  CAS  Google Scholar 

  • OJEC. (2000). Council directive 2000/60/EC establishing a framework for community action in the field of water policy. Luxembourg: European Parliament and the Council of the European Union.

    Google Scholar 

  • Outram, F. N., Lloyd, C. E. M., Jonczyk, J., Benskin, C. M. H., Grant, F., Perks, M. T., et al. (2014). High-frequency monitoring of nitrogen and phosphorus response in three rural catchments to the end of the 2011-2012 drought in England. Hydrol Earth Syst Sc, 18, 3429–3448. doi:10.5194/hess-18-3429-2014.

    Article  Google Scholar 

  • Perks, M. T., Owen, G. J., Benskin, C. M. H., Jonczyk, J., Deasy, C., Burke, S., et al. (2015). Dominant mechanisms for the delivery of fine sediment and phosphorus to fluvial networks draining grassland dominated headwater catchments. Sci Total Environ, 523, 178–190. doi:10.1016/j.scitotenv.2015.03.008.

    Article  CAS  Google Scholar 

  • Petit, K. (2010). Progress in monitoring river quality. France: Office nationale de l'eau et des milieux aquatiques (ONEMA).

  • Pettyjohn, W. A., Henning, R.(1979). Preliminary estimate of groundwater recharge rates, related streamflow and water quality in Ohio. Ohio State. University Water Resources Center, Project Completion Report Number 552, 323.

  • Priestly, S. (2015). Water Framework Directive: achieving good status of water bodies, Briefing Paper Number CBP 7246. House of Commons Library, London.

  • Robson, B. (2014). State of the art in modelling of phosphorus in aquatic systems: Review, criticisms and commentary. Environmental Modelling and Software, 61, 339–359. doi:10.1016/j.envsoft.2014.01.012.

    Article  Google Scholar 

  • Rode, M., Wade, A. J., Cohen, M. J., Hensley, R. T., Bowes, M. J., Kirchner, J. W., et al. (2016). Sensors in the stream: The high-frequency wave of the present. Environmental Science and Technology, 50(19), 10297–10307. doi:10.1021/acs.est.6b02155.

    Article  CAS  Google Scholar 

  • Romagnoli, M., Portapila, M., Rigalli, A., Maydana, G., Burgués, M., & García, C. M. (2017). Assessment of the SWAT model to simulate a watershed with limited available data in the pampas region, Argentina. Sci Total Envirot, 596-597, 437–450. doi:10.1016/j.scitotenv.2017.01.041.

    Article  CAS  Google Scholar 

  • Schoumans, O. F., Silgram, M., Groenendijk, P., Bouraoui, F., Andersen, H. E., Kronvang, B., et al. (2009). Description of nine nutrient loss models: Capabilities and suitability based on their characteristics. J Environ Monitor, 11, 506–514. doi:10.1016/j.agee.2011.07.00910.1039/b823239c.

    Article  CAS  Google Scholar 

  • Sharpley, A., & Wang, X. (2014). Managing agricultural phosphorus for water quality: Lessons from the USA and China. Journal of Environmental Sciences, 26, 1770–1782. doi:10.1016/j.jes.2014.06.024.

    Article  Google Scholar 

  • Sharpley, A., Jarvie, H. P., Buda, A., May, L., Spears, B., & Kleinman, P. (2013). Phosphorus legacy: Overcoming the effects of past management practices to mitigate future water quality impairment. Journal of Environmental Quality, 42, 1308–1326. doi:10.2134/jeq2013.03.0098.

    Article  CAS  Google Scholar 

  • SI 272. (2012). European Communities environmental objectives (surface waters) (amendment) regulations. Dublin: Stationery Office.

    Google Scholar 

  • Skeffington, R. A., Halliday, S. J., Wade, A. J., Bowes, M. J., & Loewenthal, M. (2015). Using high-frequency water quality data to assess sampling strategies for the EU water framework directive. Hydrol Earth Syst Sc, 19, 2491–2504. doi:10.5194/hess-19-2491-2015.

    Article  Google Scholar 

  • Spiess, A. N., & Neumeyer, N. (2010). An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: A Monte Carlo approach. BMC Pharmacology, 10, 6. doi:10.1186/1471-2210-10-6.

    Article  Google Scholar 

  • Trevisan, D., Quétin, P., Barbet, D., & Dorioz, J. M. (2012). POPEYE: A river-load oriented model to evaluate the efficiency of environmental policy measures for reducing phosphorus losses. Journal of Hydrology, 450-451, 254–266. doi:10.1016/j.hydrol.2012.05.001.

    Article  CAS  Google Scholar 

  • Verdonschot, P. F. M., Spears, B. M., Feld, C. K., Brucet, S., Keizer-Vlek, H., Borja, A., et al. (2013). A comparative review of recovery processes in rivers, lakes, estuarine and coastal waters. Hydrobiologia, 704, 453–474. doi:10.1007/s10750-012-1294-7.

    Article  Google Scholar 

  • de Vries, M., & de Boer, I. J. M. (2010). Comparing environmental impacts for livestock products: A review of life cycle assessments. Livestock Science, 128, 1–11. doi:10.1016/j.livsci.2009.11.007.

    Article  Google Scholar 

  • Wade, A. J., Palmer-Felgate, E. J., Halliday, S. J., Skeffington, R. A., Loewenthal, M., Jarvie, H. P., et al. (2012). Hydrochemical processes in lowland rivers: Insights from in situ, high-resolution monitoring. Hydrol Earth Syst Sc, 16, 4323–4342. doi:10.5194/hess-16-4323-2012.

    Article  Google Scholar 

  • Welch, B. L. (1947). The generalization of students problem when several different population variances are involved. Biometrika, 34, 28–35. doi:10.2307/2332510.

    CAS  Google Scholar 

  • Williams, A. A., & Kimball, M. E. (2013). Evaluation of long-term trends in hydrographic and nutrient parameters in a southeast US coastal river. Environmental Monitoring and Assessment, 185, 10495–10509. doi:10.1007/s10661-013-3347-4.

    Article  CAS  Google Scholar 

  • Withers, P. J. A., Jarvie, H. P., Hodgkinson, R. A., Palmer-Felgate, E. J., Bates, A., Neal, M., et al. (2009). Characterization of phosphorus sources in rural watersheds. Environ Qual, 38, 1998–2011. doi:10.2134/jeq2008.0096.

    Article  CAS  Google Scholar 

  • Withers, P. J. A., May, L., Jarvie, H. P., Jordan, P., Doody, D., Foy, R. H., et al. (2012). Nutrient emissions to water from septic tank systems in rural catchments: Uncertainties and implications for policy. Environmental Science & Policy, 24, 71–82. doi:10.1016/j.envsci.2012.07.023.

    Article  CAS  Google Scholar 

  • Withers, P. J. A., Jordan, P., May, L., Jarvie, H. P., & Deal, N. (2014). Do septic tank systems pose a hidden threat to water quality? Frontiers in Ecology and the Environment, 12, 123–130. doi:10.1890/130131.

    Article  Google Scholar 

  • Yang, Y. S., & Wang, L. (2010). A review of modelling tools for implementation of the EU water framework directive in handling diffuse water pollution. Water Resources Management, 24(9), 1819–1843. doi:10.1007/s11269-009-9526-y.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Teagasc Agricultural Catchments Programme (ACP—funded by the Department of Agriculture, Food and Marine, Ireland) scientists, technologists, technicians and advisors for support received throughout this project. The authors also acknowledge John Haslett of the School of Computer Science and Statistics, Trinity College Dublin, for model conceptualization and statistical support, and two anonymous referees for their very helpful comments. The lead author was supported by a Walsh Fellowship through Teagasc and the second author was funded, in part, by Science Foundation Ireland, grant 10/CE/1855 to Lero—the Irish Software Engineering Research Centre (www.lero.ie). Concepts of LAM testing with high-resolution P data were developed with help from Dr. Rachel Cassidy, Agri-Food Biosciences Institute, Belfast. The research is based on a confidential dataset collected by a government funded research programme and, as a result, is unavailable for public access. However, summary statistics of all model outputs are provided in the online resource for transparency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Crockford.

Electronic supplementary material

ESM 1

(PDF 982 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crockford, L., O’Riordain, S., Taylor, D. et al. The application of high temporal resolution data in river catchment modelling and management strategies. Environ Monit Assess 189, 461 (2017). https://doi.org/10.1007/s10661-017-6174-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6174-1

Keywords

Navigation