Skip to main content

Advertisement

Log in

Estimation of the removal efficiency of heavy metals and nutrients from ecological drainage ditches treating town sewage during dry and wet seasons

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Vegetated drainage ditches (ecological drainage ditches, EDD) are commonly used for the treatment of nutrients, suspended solids, and pesticides, from agricultural lands and aquaculture effluent. However, their effectiveness to remove heavy metals/metalloids (HM/Ms) and fate remains largely unexplored. In addition, there exists some uncertainty concerning the performance of the EDD in treating HM/Ms. This study presents a thorough assessment on the removal efficiencies of HM/Ms and identifies the parameters affecting the HM/Ms removal process in the EDD receiving primary domestic sewage for 13 years. The mean concentrations of the studied HM/Ms in sediments were lower than those reported in the aquatic ecosystems affected by coal-mine drainage and industrial wastewaters. The results also showed that the concentrations of the selected HM/Ms in ditch sediment were generally far higher than the soil background values of Sichuan basin. Concentrations of all the studied HM/Ms and nutrients in water entering the EDD were significantly higher than the effluent. The annual mean removal efficiencies of Ni, Cu, Cr, Zn, Cd, Pb, As, Fe, Al, Mn, N, and P in the ecological drainage ditch were 50.6, 56.1, 63.3, 79.3, 67.5, 80.1, 60.3, 52.6, 19.8, 24.3, 72.0, and 59.7%, respectively. The study also displayed that dissolved oxygen levels at the outlet were significantly (p < 0.001) higher after passing into the EDD system. The pH was kept at neutral or alkaline. Removal of HM/Ms and nutrients was seasonal, generally peaking in the growing season. Sedimentation was the major mechanism removing HM/Ms within the EDD system. EDD was found to possess a favorable influence at mitigating HM/Ms and nutrients in situ and can be successfully utilized to resolve this type of environmental pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aksoy, A., Demirezen, D., & Duman, F. (2005). Bioaccumulation, detection and analyses of heavy metal pollution in sultan marsh and its environment. Water, Air, and Soil Pollution, 164, 241–255.

    Article  CAS  Google Scholar 

  • Bennett, E. R., Moore, M. T., Cooper, C. M., Smith Jr., S., Shields, F. D., Drouillard, K. G., & Schulz, R. (2005). Vegetated agricultural drainage ditches for the mitigation of pyrethroid-associated runoff. Environmental Toxicology and Chemistry, 24, 2121–2127.

    Article  CAS  Google Scholar 

  • Bouldin, J. L., Farris, M. T., Moore, M. T., & Cooper, C. M. (2004). Vegetative and structural characteristics of agricultural drainages in the Mississippi Delta landscapes. Environmental Pollution, 132, 403–411.

    Article  CAS  Google Scholar 

  • Carapeto, C., & Purchase, D. (2002). Artificial wetlands and their importance for water quality. In J. Pries (Ed.), Treatment wetlands for water quality improvement (pp. 45–52). Waterloo: CH2M HILL Canada.

    Google Scholar 

  • Carranza-A’lvarez, C., Alonso-Castro, A. J., Alfaro-De La Torre, M. C., & Garcia-DeLa Cruz, R. F. (2008). Accumulation and distribution of heavy metals in Scirpus americanus and Typha Latifolia from an artificial lagoon in San Luis Potosı, Mexico. Water, Air, and Soil Pollution, 188, 297–309.

    Article  Google Scholar 

  • CEMS. (1990). Chinese environmental monitoring station. Background values of elements in soils of China (in Chinese) (p. 501). Beijing: China Environmental Press.

    Google Scholar 

  • Chen, L., Liu, F., Wang, Y., Li, X., Zhang, S. N., Li, Y., & Wu, J. S. (2015). Nitrogen removal in an ecological ditch receiving agricultural drainage in subtropical central China. Ecological Engineering, 82, 487–492.

    Article  Google Scholar 

  • Cooper, C. M., Moore, M. T., Bennett, E. R., Smith Jr., S., Farris, J. L., Milam, C. D., & Shields Jr., F. D. (2004). Innovative uses of vegetated drainage ditches for reducing agricultural runoff. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 49, 117–123.

    CAS  Google Scholar 

  • DeLaune, R. D., Gambrell, R. P., & Knox, R. S. (1989). Accumulation of heavy metals and PCB’s in an urban lake. Environmental Technology Letters, 10, 753–762.

    Article  CAS  Google Scholar 

  • Deng, H., Ye, Z. H., & Wong, M. H. (2006). Lead and zinc accumulation and tolerance in populations of six wetland plants. Environmental Pollution, 141, 69–80.

    Article  CAS  Google Scholar 

  • Flora, C., & Kröger, R. (2014). Use of vegetated drainage ditches and lowgrade weirs for aquaculture effluent mitigation: II. Suspended sediment. Aquacultural Engineering, 60, 68–72.

    Article  Google Scholar 

  • Fu, D. F., Gong, W. J., Xu, Y., Singh, R. P., Surampallib, R. Y., & Zhang, T. C. (2014). Nutrient mitigation capacity of agricultural drainage ditches in Tai lake basin. Ecological Engineering, 71, 101–107.

    Article  Google Scholar 

  • Gill, S. L., Spurlock, F. C., Goh, K. S., & Ganapathy, C. (2008). Vegetated ditches as a management practice in irrigated alfalfa. Environmental Monitoring and Assessment, 144, 261–267.

    Article  CAS  Google Scholar 

  • Heather, L. T., Matthew, T. M., & Martin, A. L. (2012). Influence of three aquatic macrophytes on mitigation of nitrogen species from agricultural runoff. Water, Air, and Soil Pollution, 223, 3227–3236.

    Article  Google Scholar 

  • Herzon, I., & Helenius, J. (2008). Agricultural drainage ditches, their biological importance and functioning. Biological Conservation, 141, 1171–1183.

    Article  Google Scholar 

  • Jeanne, D., Cécile, D., Jean-Stéphane, B., Philippe, L., & Marc, V. (2015). Managing ditches for agroecological engineering of landscape. A review. Agronomy for Sustainable Development, 35, 999–1020.

    Article  Google Scholar 

  • Kadlec, R. H., & Knight, R. L. (1996). Treatment wetlands. Boca Raton: CRC Press.

    Google Scholar 

  • Koretsky, C. M., Cuellar, A., Haveman, M., Beuving, L., Shattuck, T., & Wagner, M. (2008). Influence of Spartina and Juncus on saltmarsh sediments II. Trace element geochemistry. Chemical Geology, 255, 100–113.

    Article  CAS  Google Scholar 

  • Kroger, R., Cooper, C. M., & Moore, M. T. (2008). A preliminary study of an alternative controlled drainage strategy in surface drainage ditches: low-grade weirs. Agricultural Water Management, 95, 678–684.

    Article  Google Scholar 

  • Kröger, R., Holland, M. M., Moore, M. T., & Cooper, C. M. (2007). Hydrological variability and agricultural drainage ditch inorganic nitrogen reduction capacity. Journal of Environmental Quality, 36, 1646–1652.

    Article  Google Scholar 

  • Kumwimba, M. N., Bo, Z., Zhixin, D., Jialiang, T., Tao, W., Liwei, X., & Muyembe, D. K. (2016a). Assessing nutrient, biomass and sediment transport of drainage ditches in the Three Gorges Reservoir area. Clean- Soil Air Water. doi:10.1002/clen.201501012.

  • Kumwimba, M. N., Dzakpasu, M., Bo, Z., & Muyembe, D. K. (2016b). Uptake and release of sequestered nutrient in subtropical monsoon ecological ditch plant species. Water, Air, and Soil Pollution. doi:10.1007/s11270-016-3105-7.

  • Kumwimba, M. N., Mawuli, D., Bo, Z., Tao, W., Lunda, I., & Kavidia, D. K. (2016c). Nutrient removal in a trapezoidal vegetated drainage ditch used to treat primary domestic sewage in a small catchment of the upper Yangtze River. Water Environment Journal. doi:10.1111/wej.12225.

  • Kumwimba, M. N., Zhu, B., Wang, T., & Muyembe, D. K. (2016d). Distribution and risk assessment of metals and arsenic contamination in man-made ditch sediments with different land use types. Environ. Sci. Pollut. R. doi. doi:10.1007/s11356-016-7690-1.

  • Kumwimba, M. N., Zhu, B., Wang, T., Zhao, Y., & Muyembe, D. K. (2015). Metal distribution and contamination assessment in drainage ditch water in the main rice/vegetable area of Sichuan Hilly Basin. B. Environ. Contam. Tox., 96, 248–253.

    Article  Google Scholar 

  • Lesage, E., 2006. Behaviour of heavy metals in constructed treatment wetlands. Dissertation, Ghent University, Ghent, Belgium.

  • Lesage, E., Rousseau, D. P. L., Meers, E., Van de Moortel, A. M. K., Du Laing, G., Tack, F. M. G., De Pauw, N., & Verloo, M. G. (2007b). Accumulation of metals in the sediment and reed biomass of a combined constructed wetland treating domestic wastewater. Water, Air, and Soil Pollution, 183, 253–264.

    Article  CAS  Google Scholar 

  • Lesage, E., Rousseau, D. P. L., Meers, E., Tack, F. M. G., & De Pauw, N. (2007a). Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium. Sci. Tot. Environ., 380, 102–115.

    Article  CAS  Google Scholar 

  • Mattiuzzo, E., Favero, L., Zennaro, F., & Franco, D. (2007). Heavy metal behavior in an experimental free water surface wetland in the Venice Lagoon watershed. Water, Air, and Soil Pollution, 183, 143–151.

    Article  CAS  Google Scholar 

  • Moore, M. T., Kröger, R., Locke, M. A., Cullum, R. F., Steinriede Jr., R. W., & Testa, S. (2010). Nutrient mitigation capacity in Mississippi Delta, USA drainage ditches. Environmental Pollution, 158, 175–184.

    Article  CAS  Google Scholar 

  • Needelman, B. A., Kleinman, P. J. A., Strock, J. S., & Allen, A. L. (2007). Improved management of agricultural drainage ditches for water quality protection: an overview. Journal of Soil and Water Conservation, 62, 171–178.

    Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1980). Total nitrogen analysis for soil and plant tissues. Journal of the Association of Official Analytical Chemists, 63, 770–778.

    CAS  Google Scholar 

  • Ojo, O.E., Mashauri, D.A., 1996. Uptake of heavy metals in the root-zone of Msimbazi reeds. In: Proceedings of 5th international conference on wetland systems for water pollution control. Universita ¨t fu ¨r Bodenkultur, Vienna, Austria.

  • Rattan, R. K., Datta, S. P., Chandra, S., & Saharan, N. (2002). Heavy metals and environmental quality: Indian scenario. Fertil. News, 47, 21–40.

    CAS  Google Scholar 

  • Revitt, D. M., Schutes, R. B. E., Jones, R. H., Forshaw, M., & Winter, B. (2004). The performances of vegetative treatment systems for highway runoff during dry and wet conditions. Sci. Total Environ., 335, 261–270.

    Article  Google Scholar 

  • Scholes, L., Shutes, R. B. E., Revitt, D. M., Forshaw, M., & Purchase, D. (1998). The treatment of metals in urban runoff by constructed wetlands. Sci. Tot. Environ., 214, 211–219.

    Article  CAS  Google Scholar 

  • SEPA. Chinese, 2002. Water and Wastewater Monitoring Methods, fourth ed. Beijing: Chinese Environmental Science Publishing House.

  • Tatsi, A. A., & Zouboulis, A. I. (2002). A field investigation of the quantity and quality of leachate from a municipal solid waste landfill in a Mediterranean climate. Advances in Environmental Research, 6, 207–219.

    Article  CAS  Google Scholar 

  • Terzakis, S., Fountoulakis, M. S., Georgaki, I., Albantakis, D., Sabathianakis, I., Karathanasis, A. D., Kalogerakis, N., & Manios, T. (2008). Constructed wetlands treating highway runoff in the central Mediterranean region. Chemosphere, 72, 141–149.

    Article  CAS  Google Scholar 

  • Von der Heyden, C. J., & New, M. G. (2004). Sedimentary chemistry: a history of mine contaminant remediation and an assessment of processes and pollution potential. Journal of Geochemical Exploration, 82, 35–57.

    Article  Google Scholar 

  • Vymazal, J. (2003). Distribution of iron, cadmium, nickel and lead in a constructed wetland receiving municipal sewage. In J. Vymazal (Ed.), Wetlands—nutrients, metals and mass cycling (pp. 341–363). Leiden: Backhuys Publishers.

    Google Scholar 

  • Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Sci. Total Environ., 380, 48–65.

    Article  CAS  Google Scholar 

  • Vymazal, J., Jaroslav, S., Lenka, K., Jana, N., & Vladimír, S. (2010). Heavy metals in sediments from constructed wetlands treating municipal wastewater. Biogeochemistry, 101, 335–356.

    Article  CAS  Google Scholar 

  • Wu, X., Wu, H., & Ye, J. (2014). Purification effects of two eco-ditch systems on Chinese soft-shelled turtle greenhouse culture wastewater pollution. Environmental Science and Pollution Research, 8, 5610–5618.

    Article  Google Scholar 

  • Yang, B., Lan, C. Y., Yang, C. S., Liao, W. B., Chang, H., & Shu, W. S. (2005). Long-term efficiency and stability of wetlands for treating wastewater of a lead/zinc mine and the concurrent ecosystem development. Environmental Pollution, 143, 499–512.

    Article  Google Scholar 

  • Ye, Z. H., Baker, A. J. M., Wong, M. H., & Willis, A. J. (1997). Zinc, lead and cadmium tolerance, uptake and accumulation by Typha latifolia. The New Phytologist, 136, 469–480.

    Article  CAS  Google Scholar 

  • Zhang, M., He, Z., Calvert, D. V., & Stoffella, P. J. (2004). Spatial and temporal variations of water quality in drainage ditches within vegetable farms and citrus groves. Agricultural Water Management, 65, 39–57.

    Article  Google Scholar 

  • Zhang, Z. Y., Kong, L. L., Zhu, L., & Mwiya, R. M. (2013). Effect of drainage ditch layout on nitrogen loss by runoff from an agricultural watershed. Pedosphere, 23, 256–264.

    Article  CAS  Google Scholar 

  • Zhulidov, A. V., Headley, J. V., Robarts, R. D., Nikanorov, A. M., Ischenko, A. A., & Champ, M. A. (1997). Concentrations of Cd, Pb, Zn and Cu in contaminated wetlands of the Russian Arctic. Marine Pollution Bulletin, 35, 252–259.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Natural Science Foundation of China (Grant Nos. 41430750 and 4171241) and the CAS-TWAS President’s Fellowship Programme for financial support of this work. We thank many colleagues for their assistance in the field and laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhu.

Additional information

Highlights

• EDD receiving untreated sewage were monitored in subtropical monsoon climate

• Removal of HM/Ms and nutrients was seasonal.

• Removal efficiencies of HMs were between 20 and 67%.

• EDD can be a suitable alternative for removing HMs through several processes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumwimba, M.N., Zhu, B. & Muyembe, D.K. Estimation of the removal efficiency of heavy metals and nutrients from ecological drainage ditches treating town sewage during dry and wet seasons. Environ Monit Assess 189, 434 (2017). https://doi.org/10.1007/s10661-017-6136-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6136-7

Keywords

Navigation