Skip to main content
Log in

Assessment of organic pollution of an industrial river by synchronous fluorescence and UV–vis spectroscopy: the Fensch River (NE France)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

To rapidly monitor the surface water quality in terms of organic pollution of an industrial river undergoing restoration, optical methods (UV–visible spectrometry and fluorescence) were applied in parallel to classical physical–chemical analyses. UV–visible spectra were analyzed using the maximum of the second derivative at 225 nm (related to nitrates), specific absorbance at 254 nm (SUVA254), and the spectral slope between 275 and 295 nm (S 275–295) (related to the aromaticity and molecular weight of dissolved organic carbon). The synchronous fluorescence spectra (wavelength difference = 50 nm) exhibited a high variability in the composition of dissolved organic material between the upstream and downstream sections and also versus time. The principal components analysis of the entire set of synchronous fluorescence spectra helped to define three river sections with different pollution characteristics. Spectral decomposition was applied to the two most upstream sections: five fluorophores, classical in rivers impacted by domestic sewage and related to protein-like (λ ex = 280 nm) and humic-like fluorescence (M-type with λ ex ≈ 305–310 nm and C-type with λ ex ≥ 335 nm), were identified. The irregular shape of the synchronous fluorescence spectra in the most downstream section is likely due to organic pollutants of industrial origin; however, their variability and the complexity of the spectra did not allow the further elucidation of their nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Assaad, A., Pontvianne, S., Corriou, J. P., & Pons, M. N. (2015). Spectrophotometric characterization of dissolved organic matter in a rural watershed: the Madon River (N.E France). Environmental Monitoring and Assessment, 187(4), 188.

    Article  Google Scholar 

  • Baker, A. (2002). Fluorescence properties of some farm wastes: implications for water quality monitoring. Water Research, 36, 189–195.

    Article  CAS  Google Scholar 

  • Banque Hydro (2017) http://www.hydro.eaufrance.fr, last accessed on Jan 8, 2017

  • Barker, J. D., Sharp, M. J., & Turner, R. J. (2009). Using synchronous fluorescence spectroscopy and principal components analysis to monitor dissolved organic matter dynamics in a glacier system. Hydrological Processes, 23, 1487–1500.

    Article  Google Scholar 

  • Beyer, J., Jonsson, G., Porte, G., Krahne, M. M., & Ariese, F. (2010). Analytical methods for determining metabolites of polycyclic aromatic hydrocarbon (PAH) pollutants in fish bile: a review. Environmental Toxicology and Pharmacology, 30, 224–244.

    Article  CAS  Google Scholar 

  • Blough, N. V., & Del Vecchio, R. (2002). Chromophoric DOM in the coastal environment. In D. A. Hansell & C. A. Carlson (Eds.), Biogeochemistry of marine dissolved organic matter (pp. 509–546). San Diego: Associated Press.

    Chapter  Google Scholar 

  • Cantwell, M. G., Perron, M. M., Sullivan, J. C., Katz, D. R., Burgess, R. M., & King, J. (2014). Assessing organic contaminant fluxes from contaminated sediments following dam removal in an urbanized river. Environmental Monitoring and Assessment, 186, 4841–4855.

    Article  CAS  Google Scholar 

  • Coble, P. G. (1996). Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry, 51, 325–346.

    Article  CAS  Google Scholar 

  • Djikanović, D., Kalauzi, A., Jeremić, M., Mićić, M., & Radotić, K. (2007). Deconvolution of fluorescence spectra: contribution to the structural analysis of complex molecules. Colloid and Surfaces B: Biointerfaces, 54, 188–192.

    Article  Google Scholar 

  • DREAL Lorraine (2013) Chronique BFL (2013) http://www.lorraine.developpement-durable.gouv.fr/IMG/pdf/Chronique_BFL_2013_semestre2_finale_cle296983.pdf (last accessed on Nov 4, 2015).

  • Edzwald, J. K., & Tobiason, J. E. (1999). Enhanced coagulation: US requirements and a broader view. Water Science and Technology, 40, 63–70.

    Article  CAS  Google Scholar 

  • Esbensen, K.H. & Geladi, P. (2009) Principal component analysis: concept, geometrical interpretation, mathematical background, algorithms, history, practice, in: Comprehensive chemometrics. Elsevier, pp. 211–226.

  • Ferree, M. A., & Shannon, R. D. (2001). Evaluation of a second derivative UV/visible spectroscopy technique for nitrate and total nitrogen analysis of wastewater samples. Water Research, 35, 327–332.

    Article  CAS  Google Scholar 

  • Grigorakis, K., & Rigos, G. (2011). Aquaculture effects on environmental and public welfare—the case of Mediterranean mariculture. Chemosphere, 85, 899–919.

    Article  CAS  Google Scholar 

  • Guéguen, C., Burns, D. C., McDonald, A., & Ring, B. (2012). Structural and optical characterization of dissolved organic matter from the lower Athabasca River, Canada. Chemosphere, 87, 932–937.

    Article  Google Scholar 

  • Guo, X., Yuan, D., Jiang, J., Zhang, H., & Deng, Y. (2013). Detection of dissolved organic matter in saline-alkali soils using synchronous fluorescence spectroscopy and principal component analysis. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 104, 280–286.

    Article  CAS  Google Scholar 

  • Han, S., Cheng, X., Ma, S., & Ren, T. (2006). Application of synchronous fluorescence spectrometry in separation of aromatics from hydrotreated naphthenic oil. Petroleum Science and Technology, 24, 851–858.

    Article  CAS  Google Scholar 

  • Hixon, J., & Reshetnyak, Y. K. (2009). Algorithm for the analysis of tryptophan fluorescence spectra and their correlation with protein structural parameters. Algorithms, 2, 1155–1176.

    Article  CAS  Google Scholar 

  • Hopke, P. (2015). Chemometrics applied to environmental systems. Chemometrics and Intelligent Laboratory Systems, 149, 205–214.

    Article  CAS  Google Scholar 

  • Hudson, N., Baker, A., & Reynolds, D. (2007). Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters—a review. River Research and Applications, 23, 631–649.

    Article  Google Scholar 

  • Izbicki, J. A., Flint, A. L., O’Leary, D. R., Nishikawa, T., Martin, P., Johnson, R. D., & Clark, D. A. (2015). Storage and mobilization of natural and septic nitrate in thick unsaturated zones, California. Journal of Hydrology, 524, 147–165.

    Article  CAS  Google Scholar 

  • Jeanneau, L., Faure, P., Montarges-Pelletier, E., & Ramelli, M. (2006). Impact of a highly contaminated river on a more important hydrologic system: changes in organic markers. Science of the Total Environment, 372, 183–192.

    Article  CAS  Google Scholar 

  • Johnson, A. C., Acreman, M. C., et al. (2009). The British river of the future: how climate change and human activity might affect two contrasting river ecosystems in England. Science of the Total Environment, 407, 4787–4798.

    Article  CAS  Google Scholar 

  • Karakoç, F. T., Atabay, H., Tolun, L., & Kuzyaka, E. (2015). Fast scanning of illegal oil discharges for forensic identification: a case study of Turkish coasts. Environmental Monitoring and Assessment, 187, 211.

    Article  Google Scholar 

  • Kavanagh, R. J., Burnison, B. K., Frank, R. A., Solomon, K. R., & Van Der Kraak, G. (2009). Detecting oil sands process-affected waters in the Alberta oil sands region using synchronous fluorescence spectroscopy. Chemosphere, 76, 120–126.

    Article  CAS  Google Scholar 

  • Kim, K. H., Jahan, S. A., Kabir, E., & Brown, R. J. C. (2013). A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environment International, 60, 71–80.

    Article  CAS  Google Scholar 

  • Korak, J. A., Wert, E. C., & Rosario-Ortiz, F. L. (2015). Evaluating fluorescence spectroscopy as a tool to characterize cyanobacteria intracellular organic matter upon simulated release and oxidation in natural water. Water Research, 68, 432–443.

    Article  CAS  Google Scholar 

  • Kronimus, A., Schwarzbauer, J., Dsikowitzky, L., Heim, S., & Littke, R. (2004). Anthropogenic organic contaminants in sediments of the Lippe river, Germany. Water Research, 38, 3473–3484.

    Article  CAS  Google Scholar 

  • Kumar, K., & Mishra, A. K. (2015). Parallel factor (PARAFAC) analysis on total synchronous fluorescence spectroscopy (TSFS) data sets in excitation–emission matrix fluorescence (EEMF) layout: certain practical aspects. Chemometrics and Intelligent Laboratory, 147, 121–130.

    Article  CAS  Google Scholar 

  • Lakowicz, J. R. (1999). Principles of fluorescence spectroscopy. New York: Kluwer Academic/Plenum.

    Book  Google Scholar 

  • Lawaetz, A. J., & Stedmon, C. A. (2009). Fluorescence intensity calibration using the Raman scatter peak of water. Applied Spectroscopy, 63, 936–040.

    Article  CAS  Google Scholar 

  • Liu, R., Tan, R., Li, B., Song, Y., Zeng, P., & Li, Z. (2015). Overview of POPs and heavy metals in Liao River Basin. Environmental Earth Sciences, 73, 5007–5017.

    Article  CAS  Google Scholar 

  • Matilainen, A., Gjessing, E. T., Lahtinen, T., Hed, L., Bhatnagar, A., & Sillanpää, M. (2011). An overview of the methods used in the characterization of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere, 83, 1431–1442.

    Article  CAS  Google Scholar 

  • Meng, F., Huang, G., Yang, X., Li, Z., Li, J., Cao, J., Wang, Z., & Sun, L. (2013). Identifying the sources and fate of anthropogenically impacted dissolved organic matter (DOM) in urbanized rivers. Water Research, 47, 5027–5039.

    Article  CAS  Google Scholar 

  • Mohamed, M. H., Wilson, L. D., Headley, J. V., & Peru, K. M. (2008). Screening of oil sands naphthenic acids by UV-Vis absorption and fluorescence emission spectrophotometry. Journal of Environmental Science and Health, Part A, 43, 1700–1705.

    Article  CAS  Google Scholar 

  • Moodley, K., Pillay, S., & Pather, K. (2015). Spatiotemporal characterization of water chemistry and pollution sources of the Umhlatuzana, Umbilo and Amanzimnyama River catchments of Durban, KwaZulu-Natal, South Africa. Environmental Earth Sciences, 74, 1273–1289.

    Article  CAS  Google Scholar 

  • Motelay-Massei, A., Ollivon, D., Garban, B., Tiphagne-Larcher, K., Zimmerlin, I., & Chevreuil, M. (2007). PAHs in the bulk atmospheric deposition of the Seine river basin: source identification and apportionment by ratios, multivariate statistical techniques and scanning electron microscopy. Chemosphere, 67, 312–321.

    Article  CAS  Google Scholar 

  • Parlanti, E., Wörz, K., Geoffroy, L., & Lamotte, M. (2000). Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Organic Geochemistry, 31, 1765–1781.

    Article  CAS  Google Scholar 

  • Patra, D., & Mishra, A. K. (2002). Recent developments in multi-component synchronous fluorescence scan analysis. Trends in Analytical Chemistry, 21, 787–798.

    Article  CAS  Google Scholar 

  • Pharr, D. Y., McKenzie, J. K., & Hickman, A. B. (1992). Fingerprinting petroleum contamination using synchronous scanning fluorescence spectroscopy. Ground Water, 30, 484–489.

    Article  CAS  Google Scholar 

  • Proctor, C. W., & Roesler, C. S. (2010). New insights on obtaining phytoplankton concentration and composition from in situ multispectral chlorophyll fluorescence. Limnology and Oceanography: Methods, 8, 695–708.

    CAS  Google Scholar 

  • Sharma, H., Jain, V. K., & Khan, Z. H. (2007). Identification of polycyclic hydrocarbons (PAHs) in suspended particulate matter by synchronous fluorescence spectroscopic technique. Spectrochemica Acta Part A, 68, 43–49.

    Article  Google Scholar 

  • Sharma, H., Jain, V. K., & Khan, Z. H. (2013). Use of constant wavelength synchronous spectrofluorimetry for identification of polycyclic aromatic hydrocarbons in air particulate samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 108, 268–273.

    Article  CAS  Google Scholar 

  • Shivendra, B. T., & Ramaraju, H. K. (2015). Impact of onsite sanitation system on groundwater in different geological settings of peri urban areas. Aquatic Procedia, 4, 1162–1172.

    Article  Google Scholar 

  • Shu, Z., Li, C., Belosevic, M., Bolton, J. R., & El-Din, M. G. (2014). Application of a solar UV/chlorine advanced oxidation process to oil sands process-affected water remediation. Environmental Science and Technology, 48, 9692–9701.

    Article  CAS  Google Scholar 

  • Sobiechowska-Sasim, M., Stoń-Egiert, J., & Kosakowska, A. (2014). Quantitative analysis of extracted phycobilin pigments in cyanobacteria—an assessment of spectrophotometric and spectrofluorometric methods. Journal of Applied Phycology, 26, 2065–2074.

    Article  CAS  Google Scholar 

  • Solaun, O., Rodríguez, J. G., Borja, A., Larreta, J., Legorburu, I., & Valencia, V. (2015). Source characterisation and mid-term spatial and temporal distribution of polycyclic aromatic hydrocarbons in molluscs along the Basque coast (northern Spain). Chemistry and Ecology, 31, 416–431.

    Article  CAS  Google Scholar 

  • Spencer, R. G. M., Baker, A., Ahad, J. M. E., Cowie, G. L., Ganeshram, R., Upstill-Goddard, R. C., & Uher, G. (2007). Discriminatory classification of natural and anthropogenic waters in two U.K. estuaries. Science of the Total Environment, 373, 305–323.

    Article  CAS  Google Scholar 

  • Sposito, T. L., Bisinoti, M. C., & Moreira, A. B. (2009). Simultaneous determination of phenanthrene and benzo(a)pyrene in water samples by synchronous fluorescence spectroscopy. Analytical Letters, 42, 2271–2279.

    Article  CAS  Google Scholar 

  • Tairova, Z. M., Giessing, M. B., Hansen, R., & Andersen, O. (2009). 1-Hydroxypyrene as a biomarker of PAH exposure in the marine polychaete Nereis diversicolor. Marine Environmental Research, 67, 38–46.

    Article  CAS  Google Scholar 

  • Vitali, M., Ensabella, F., Stella, D., & Guidotti, M. (2004). Nonylphenols in freshwaters of the hydrologic system of an Italian district: association with human activities and evaluation of human exposure. Chemosphere, 57, 1637–1647.

    Article  CAS  Google Scholar 

  • Vystavna, Y., Yakovlev, V., Diadin, D., Vergeles, Y., & Stolberg, F. (2015). Hydrochemical characteristics and water quality assessment of surface and ground waters in the transboundary (Russia/Ukraine) Seversky Donets basin. Environmental Earth Sciences, 74, 585–596.

    Article  CAS  Google Scholar 

  • Wang, W., Huang, M., Kang, Y., Wang, H., Leung, A. O. W., Cheung, K. C., & Wong, M. H. (2011a). Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: status, sources and human health risk assessment. Science of the Total Environment, 409, 4519–4527.

    Article  CAS  Google Scholar 

  • Wang, X. T., Miao, Y., Zhang, Y., Li, Y. C., Wu, M. H., & Yu, G. (2013). Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity Shanghai: occurrence, source apportionment and potential human health risk. Science of the Total Environment, 447, 80–89.

    Article  CAS  Google Scholar 

  • Wang, H. B., Zhang, Y. J., Xiao, X., Yu, S. H., & Liu, W. Q. (2011b). Application of excitation–emission matrix fluorescence combined with second-order calibration algorithm for the determination of five polycyclic aromatic hydrocarbons simultaneously in drinking water. Analytical Methods, 3, 688–695.

    Article  CAS  Google Scholar 

  • Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., & Mopper, K. (2003). Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environment Science and Technology, 37, 4702–4708.

    Article  CAS  Google Scholar 

  • Wu, J., Pons, M. N., & Potier, O. (2006). Wastewater fingerprinting by UV-visible and synchronous fluorescence spectroscopy. Water Science and Technology, 53(4–5), 449–456.

    Article  CAS  Google Scholar 

  • Yu, H., Song, Y., Gao, H., Liu, L., Yao, L., & Peng, J. (2015). Applying fluorescence spectroscopy and multivariable analysis to characterize structural composition of dissolved organic matter and its correlation with water quality in an urban river. Environmental Earth Sciences, 73, 5163–5171.

    Article  CAS  Google Scholar 

  • Zhang, H., Qu, J., Liu, H. I., & Zhao, X. (2009). Characterization of isolated fractions of dissolved organic matter from sewage treatment plant and the related disinfection by-products formation potential. Journal of Hazardous Materials, 164, 1433–1438.

    Article  CAS  Google Scholar 

  • Zhao, L., Hou, H., Shangguan, Y., Cheng, B., Xu, Y., Zhao, R., Zhang, Y., Hua, X., Huo, X., & Zhao, X. (2014). Occurrence, sources, and potential human health risks of polycyclic aromatic hydrocarbons in agricultural soils of the coal production area surrounding Xinzhou, China. Ecotoxicology and Environmental Safety, 108, 120–128.

    Article  CAS  Google Scholar 

  • Zhi, E., Yu, H., Duan, L., Han, L., Liu, H., & Duan, L. (2015). Characterization of the composition of water DOM in a surface flow constructed wetland using fluorescence spectroscopy coupled with derivative and PARAFAC. Environmental Earth Sciences, 73, 5153–5161.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Zone Atelier du Bassin de la Moselle (ZAM), the Région Lorraine, and the Val de Fensch Council for their help and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Noëlle Pons.

Electronic supplementary material

ESM 1

(PDF 804 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assaad, A., Pontvianne, S. & Pons, MN. Assessment of organic pollution of an industrial river by synchronous fluorescence and UV–vis spectroscopy: the Fensch River (NE France). Environ Monit Assess 189, 229 (2017). https://doi.org/10.1007/s10661-017-5933-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5933-3

Keywords

Navigation