Skip to main content

Advertisement

Log in

Pesticide contamination in groundwater bodies in the Júcar River European Union Pilot Basin (SE Spain)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The change from a traditional agricultural model to a modern, more productive one, coupled with population growth, has entailed an increased consumption of water, fertilizers and pesticides. This transformation has led to a greater risk of groundwater contamination. This study has analysed for this purpose a total of 314 samples (period 2010–2013). In addition, 332 samples from the Mancha Oriental groundwater body (period 2001–2003) were also examined in order to gain a better perspective on the temporal evolution of pesticides in groundwater bodies. Using this database, this study aims to characterize pesticide pollution and to examine possible processes. Triazine herbicides are the most common pesticides found and also appear in the highest concentrations, with terbuthylazine having a noteworthy concentration of 900 ng/L. The irrigated agriculture and the physicochemical properties of pesticides are the most important factors influencing the concentration and type of pesticides that can reach groundwater. The spatial distribution of nitrate and pesticides do not correspond as they would if the two behaved similarly. Pesticides can completely biodegrade before reaching the saturated zone, but it is also possible that their degradation products have not been analysed and, therefore, their concentrations are underestimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adams, C. D., & Thurman, E. M. (1991). Formation and transport of deethylatrazine in the soil and vadose zone. Journal of Environmental Quality, 20, 540–547.

    Article  CAS  Google Scholar 

  • Åkesson, M., Sparrenbom, C. J., Carlsson, C., & Kreuger, J. (2013). Statistical screening for descriptive parameters for pesticide occurrence in a shallow groundwater catchment. Journal of Hydrology, 477, 165–174.

    Article  Google Scholar 

  • Andrade, A., & Stigter, T. (2009). Multi-method assessment of nitrate and pesticide contamination in shallow alluvial groundwater as a function of hydrogeological setting and land use. Agricultural Water Management, 96, 1751–1765.

    Article  Google Scholar 

  • APHA-AWWA-WEF. 1998. Standard methods for the examination of water and wastewater. American Public Health Association, Washington. 20, pp 1085.

  • Aragon Statistics Institute. Agriculture and environment area. http://www.aragon.es/DepartamentosOrganismosPublicos/Institutos/InstitutoAragonesEstadistica/AreasTematicas/14_Medio_Ambiente_Y_Energia/01_SectoresProductivos/ci.01_Agricultura_medio_ambiente.detalleDepartamento. Accessed 12 March 2015.

  • Aragüés, R., & Tanji, K. K. (2003). Water quality of irrigation return flows (pp. 502–506). Encyclopaedia of Water Science: Marcel Dekker.

    Google Scholar 

  • Baran, N., Lepiller, M., & Mouvet, C. (2008). Agricultural diffuse pollution in a chalk aquifer (Trois Fontaines, France): influence of pesticide properties and hydrodynamic constraints. Journal of Hydrology, 358, 56–69.

    Article  Google Scholar 

  • Commission of the European Communities (2000). Commission decision of 20 December 2000 concerning the non-inclusion of lindane in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing this active substance (200/801/CE). Off J Eur Union 2001; L324/42.

  • Commission of the European Communities. (2002). Regulation no. 2076/2002 of 20 November 2002 extending the time period referred to in Article 8(2) of Council Directive 91/414/EEC and concerning the non-inclusion of certain active substances in Annex I to that Directive and the withdrawal of authorisations for plant protection products containing these substances. Official Journal of the European Union, L319, 3–11.

    Google Scholar 

  • Commission of the European Communities. (2004a). Commission decision of 10 March 2004 concerning the non-inclusion of simazine in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing this active substance (2004/247/EC). Official Journal of the European Union, L78, 50–52.

    Google Scholar 

  • Commission of the European Communities. (2004b). Commission decision of 10 March 2004 concerning the non-inclusion of atrazine in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing this active substance (2004/248/EC). Official Journal of the European Union, L78, 53–55.

    Google Scholar 

  • European Parliament and Council of the European Union. (2000). Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities, L327, 0001–0073.2000

    Google Scholar 

  • European Parliament and Council of the European Union. (2006). Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Official Journal of the European Communities, L372, 0019–0031.2006

    Google Scholar 

  • European Parliament and Council of the European Union. (2009). Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides. Official Journal of the European Communities, L309, 0071–0086.

  • Gavrilescu, M. (2005). Fate of pesticides in the environment and its bioremediation. Engineering in Life Science, 5, 497–526.

    Article  CAS  Google Scholar 

  • Goolsby, D. A., Thurman, E. M., Pomes, M. L., Meyer, M. T., & Battaglin, W. A. (1997). Herbicides and their metabolites in rainfall: origin, transport, and deposition patterns across the Midwestern and northeastern United States, 1990–1991. Environmental Science Technology, 31, 1325–1333.

    Article  CAS  Google Scholar 

  • Gustafson, D. I. (1989). Groundwater ubiquity score: a simple method for assessing pesticide leachability. Environmental Toxicology and Chemistry, 8, 339–357.

    Article  CAS  Google Scholar 

  • Hernández, F., Marín, J. M., Pozo, O. J., Sancho, J. V., López, F. J., & Morell, I. (2008). Pesticides residues and transformation products in groundwater from a Spanish agricultural región on the Mediterraneam Coast. International Journal of Environmental Analytical Chemistry, 88, 409–424.

    Article  Google Scholar 

  • Hertfordshire University. Pesticides database. Access 23 2015: http://sitem.herts.ac.uk/aeru/ppdb/en/

  • Hildebrandt, A., Guillamón, M., Lacorte, S., Tauler, R., & Barceló, D. (2008). Impact of pesticides used in agriculture and vineyards to surface and ground water quality (North Spain). Water Research, 42, 3315–3326.

    Article  CAS  Google Scholar 

  • Ielpo, P., Cassano, D., Lopez, A., Pappagallo, G., Uricchio, V. F., & De Napoli, P. A. (2012). Source apportionment of groundwater pollutants in Apulian agricultural sites using multivariate statistical analyses: case study of Foggia province. Chemistry Central. Journal, 6(Suppl 2), S5.

    Article  CAS  Google Scholar 

  • Irrigation Advisory Service for Farmers (SIAR). Meteorological database. http://crea.uclm.es/siar/datmeteo/. Access 20 September 2015.

  • Júcar River Basin Authority: General information. http://www.chj.es/es-es/medioambiente/cuencahidrografica/Paginas/Presentacióndelacuenca.aspx. Accessed 12 March 2015.

  • Jurado, A., Vázquez-Suñé, E., Carrera, J., López de Alda, M., Pujades, E., & Barceló, D. (2012). Emerging organic contaminants in groundwater in Spain: a review of sources, recent occurrence and fate in a European context. Science of the Total Environment, 440, 82–94.

    Article  CAS  Google Scholar 

  • Köck-Schulmeyer, M., Ginebreda, A., Postigo, C., Garrido, T., López de Alda, M., & Barceló, D. (2014). Four-year advanced monitoring program of polar pesticides in groundwater of Catalonia (NE-Spain). Science of the Total Environment, 470-471, 1087–1098.

    Article  Google Scholar 

  • Kolpin, D. W., Barbash, J. E., & Gilliom, R. J. (2000). Pesticides in ground water of the United States, 1992–1996. Groundwater, 38(6), 858–863.

    Article  CAS  Google Scholar 

  • Loos, R., Locoro, G., Comero, S., Contini, S., Schwesig, D., Werres, F., et al. (2010). Pan-European survey on the occurrence of selected polar organic persistent pollutants in groundwater. Water Research, 44, 4115–4126.

    Article  CAS  Google Scholar 

  • Malaj, E., von der Ohea, P., Grote, M., Kühne, M., Mondy, C., Usseglio-Polatera, P., Brack, W., & Schäfer, R. B. (2014). Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. PNAS, 111, 9549–9554.

    Article  CAS  Google Scholar 

  • McLay, C. D. A., Dragten, R., Sparling, G., & Selvarajah, N. (2001). Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: a comparison of three approaches. Environmental Pollution, 115(2), 191–204.

    Article  CAS  Google Scholar 

  • Meffe, R., & Bustamante, I. (2014). Emerging organic contaminants in surface water and groundwater: a first overview of the situation in Italy. Science of the Total Enviroment, 481, 280–295.

    Article  CAS  Google Scholar 

  • Melo, A., Pinto, E., Aguiar, A., Mansilha, C., Pinho, O., & Ferreira, I. (2012). Impact of intensive horticulture practices on groundwater content of nitrates, sodium, potassium, and pesticides. Environmental Monitoring and Assessment., 184, 4539–4551.

    Article  CAS  Google Scholar 

  • Ministerio de Sanidad y Consumo (1994). Orden de 4 de febrero por la que se prohíbe la comercialización de y utilización de plaguicidas de uso ambiental que contienen determinados ingredientes activos peligrosos. Boletín Oficial del Estado n° 41: 3824.

  • Moratalla, A., Gómez-Alday, J. J., De-las Heras, J., Sanz, D., & Castaño, S. (2009). Nitrate in the water-supply wells in the Mancha Oriental Hydrogeological System (SE Spain). Water resources manage, 23, 1621–1640.

    Article  Google Scholar 

  • Moratalla, Á., Gómez-Alday, J. J., Sanz, D., Castaño, S., & De Las Heras, J. (2011). Evaluation of a GIS-based integrated vulnerability risk assessment for the Mancha Oriental System (SE Spain). Water Resources Management, 25(14), 3677–3697.

    Article  Google Scholar 

  • National Centre for Geographic Information.: www.cnig.es. Access 20 October 2014.

  • Olsen, R. L., Chappell, R. W., & Loftis, J. C. (2013). Water quality simple collection, data treatment and results presentation for principal components analysis e literature review and Illinois River watershed case study. Water Research., 46, 3110–3122.

    Article  Google Scholar 

  • Pelaez, V., & Mizukawa, G. (2017). Diversification strategies in the pesticide industry: from seeds to biopesticides. Ciência Rural, 47(2).

  • Pimentel, D., & Levitan, L. (1986). Pesticides: amounts applied and amounts reaching pests. Bioscience, 36(2), 86–91.

    Article  CAS  Google Scholar 

  • Roling, W., & van Verseveld, H. W. (2002). Natural attenuation: what does the subsurface have in store? Biodegradation, 13, 53–64.

    Article  Google Scholar 

  • Sánchez, S., Pose, E., Herrero, E., Álvarez, A., Sánchez, M. J., & Rodríguez, S. (2013). Pesticide residues in groundwaters and soils of agricultural areas in the Águeda River Basin from Spain and Portugal. International Journal of Environmental Analytical Chemistry, 93, 1585–1601.

    Article  Google Scholar 

  • Sanz, D., Gómez-Alday, J. J., Castaño, S., Moratalla, A., De las Heras, J., & Martínez-Alfaro, P. E. (2009). Hydrostratigraphic framework and hydrogeological behaviour of the Mancha Oriental System (SE Spain). Hydrogeology Journal, 17(6), 1375–1391.

    Article  CAS  Google Scholar 

  • Spadotto, C. (2002). Screening method for assessing pesticide leaching potential. Pesticidas: revista de ecotoxicologia e meio ambiente, Curitiba, 12, 69–78.

    CAS  Google Scholar 

  • Stocker, Thomas F., Dahe, Qin, Gian-Kasper, Plattner, M. Tignor, Simon K. Allen, Judith Boschung, Alexander Nauels, Yu Xia, Vincent Bex, & Pauline M. Midgley. (2014). Climate change 2013: the physical science basis.

  • Vengosh, A. (2003). Salinization and saline environments. Treatise on geochemistry, 9, 333–365.

    Google Scholar 

  • Vonberg, D., Vanderborght, J., Cremer, N., Pütz, T., Herbst, M., & Vereecken, H. (2014). 20 years of long-term atrazine monitoring in a shallow aquifer in western Germany. Water Research, 50, 294–306.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by the research projects PEIC-2014-004-P from the Castilla-La Mancha Regional Government and CICYT-CGL2011-29975-C04-2 from the Spanish Government and is part of the Ph.D. dissertation of Alfonso Menchén. We would also like to thank the Jucar Basin Authority by providing data for the development of this report and Christine Laurin for improving the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Menchen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menchen, A., Heras, J.D.l. & Alday, J.J.G. Pesticide contamination in groundwater bodies in the Júcar River European Union Pilot Basin (SE Spain). Environ Monit Assess 189, 146 (2017). https://doi.org/10.1007/s10661-017-5827-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5827-4

Keywords

Navigation