Skip to main content
Log in

Speciation and mobility of volatile heavy metals (Cd, Pb, and Tl) in fly ashes

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Speciation of volatile metals Cd, Pb, and Tl in fly ashes (FAs) produced from burning of hard coal in stocker-fired boilers (SFBs) was studied. Two grain fractions of fly ash collected in a multicyclone and battery cyclone of the systems of dust separation from three SFB units operating in various urban heating plants were analyzed. The characteristic feature of speciation of the three metals was a large share of labile fractions: Cd (av. 46.1 %), Pb (av. 39.8 %), and Tl (av. 21.6 %). The fraction which most clearly reflected the different chemical properties of the investigated metals was the oxidizable fraction: F(4)-Cd—0 %, F(4)-Pb—av. 10.0 %, and F(4)-Tl—av. 30.2 %. The importance of condensation of the volatile metal species on FA particles for shaping speciation of these metals was characterized using the normalized enrichment factor (NEF): Pb (2.3 ± 0.8) > Tl (1.8 ± 0.9) ≈ Cd (1.7 ± 0.6). Speciation of heavy metals may also be important economically, because the level of mobility coefficients (K Cd = 0.46, K Pb = 0.40, and K Tl = 0.22) in the case of fly ashes considerably enriched with toxic metals (Cd 4.8 ± 3.4 mg/kg, Pb 293 ± 210 mg/kg, and Tl 6.3 ± 4.5 mg/kg) may limit their utilization range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • ACAA, (2010). American Coal Ash Association, coal combustion product (CCP) production & use survey report, available at http://www.acaa-usa.org.

  • Bhanarkar, A. D., Gavane, A. G., Tajne, D. S., Tamhane, S. M., & Nema, P. (2008). Composition and size distribution of particulates emissions from a coal-fired power plant in India. Fuel, 87, 2095–2101.

    Article  CAS  Google Scholar 

  • Dai, S., Zhao, L., Peng, S., Chou, C.-L., Wang, X., Zhang, Y., Li, D., & Sun, Y. (2010). Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar power plant, Inner Mongolia, China. International Journal of Coal Geology, 81, 320–332.

    Article  CAS  Google Scholar 

  • Dinis, M. L., & Fiúza, A. (2011). Exposure assessment to heavy metals in the environment: measures to eliminate or reduce the exposure to critical receptors. In L. I. Simeonov (Eds.), Environmental heavy metal pollution and effects on child mental development: risk assessment and prevention strategies. Springer Science & Business Media B.V.

  • ECOBA, (2010). European Coal Combustion Products Association e.V., Production and utilization of CCPs in 2010 in Europe (EU 15), available at http://www.ecoba.com/ecobaccpprod.html

  • Ewers, U. (1988). Environmental exposure to thallium. Science of the Total Environment, 71, 285–292.

    Article  CAS  Google Scholar 

  • HACH (1992). Water analysis handbook, 2nd edition. HACH Company, Loveland, Colorado (USA), pp. 152–154 and 620–624.

  • Heidrich, C., Feuerborn, H.-J., Weir A. (2013). Coal combustion products: a global perspective. 2013 World of Coal Ash (WOCA) Conference, 22–25 April, Lexington.

  • Herck, P. V., & Vandecasteele, C. (2001). Evaluation of the use of a sequential extraction procedure for the characterization and treatment of metal containing solid waste. Waste Management, 21, 685–694.

    Article  Google Scholar 

  • Hesbach, P. A., Kim, A. G., Abel, A. S. P., & Lamey, S. C. (2010). Serial batch leaching procedure for characterization of coal fly ash. Environmental Monitoring and Assessment, 168, 523–545.

    Article  CAS  Google Scholar 

  • Izquierdo, M., & Querol, X. (2012). Leaching behaviour of elements from coal combustion fly ash: an overview. International Journal of Coal Geology, 94, 54–66.

    Article  CAS  Google Scholar 

  • Jakob, A., Stucki, S., & Struis, R. P. W. J. (1996). Complete heavy metal removal from fly ash by heat treatment: influence of chlorides on evaporation rates. Environmental Science and Technology, 30(11), 3275–3283.

    Article  CAS  Google Scholar 

  • Jegadeesan, G., Al-Abed, S. R., & Pinto, P. (2008). Influence of trace metal distribution on its leachability from coal fly ash. Fuel, 87, 1887–1893.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1993). Biogeochemistry of trace elements. Warsaw: Polish Scientific Publishers PWN (in Polish).

    Google Scholar 

  • Kauppinen, E. A., & Pakkanen, T. A. (1990). Coal combustion aerosols: a field study. Environmental Science and Technology, 24, 1811–1818.

    Article  CAS  Google Scholar 

  • Ketris, M. P., & Yudovich, Y. E. (2009). Estimations of Clarkes for carbonaceous biolithes: world averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78, 135–148.

    Article  CAS  Google Scholar 

  • Klein, D. H., Andren, A. W., Carter, J. A., Emery, J. F., Feldman, C., Fulkerson, W., Lyon, W. S., Ogle, J. C., Talmi, Y., van Hook, R. I., & Bolton, N. (1975). Pathways of thirty-seven trace elements through coal-fired power plant. Environmental Science and Technology, 9(10), 973–979.

    Article  CAS  Google Scholar 

  • Kosson, D. S., Garrabrants, A. C., DeLapp, R., & van der Sloot, H. A. (2014). pH-dependent leaching of constituents of potential concern from concrete materials containing coal combustion fly ash. Chemosphere, 103, 140–147.

    Article  CAS  Google Scholar 

  • López Antόn, M. A., Spears, D. A., Somoano, M. D., & Tarazona, M. R. M. (2013). Thallium in coal: analysis and environmental implications. Fuel, 105, 13–18.

    Article  Google Scholar 

  • Lukaszewski, Z., & Zembrzuski, W. (1992). Determination of thallium in soils by flow-injection differential-pulse anodic stripping voltammetry. Talanta, 39, 221–227.

    Article  CAS  Google Scholar 

  • Mazur, J., & Konieczynski, J. (2004). Distribution of trace elements in granulometric fractions of fly-ash emitted from power stations, Monograph No. 64. Gliwice: Silesian University of Technology (in Polish).

    Google Scholar 

  • Meawad, A. S., Bojinova, D. Y., & Pelovski, Y. G. (2010). An overview of metals recovery from thermal power plant solid wastes. Waste Management, 30, 2548–2559.

    Article  CAS  Google Scholar 

  • Meij, R. (1995). The distribution of trace elements during the combustion of coal. In D. J. Swaine, F. Goodarzi (Eds.), Environmental aspects of trace elements in coal, chapter 7 (pp. 111–127). Kluwer Academic Publishers.

  • Miller, B. B., Dugwell, D. R., & Kandiyoti, R. (2002). Partitioning of trace elements during the combustion of coal and biomass in a suspension-firing reactor. Fuel, 81, 159–171.

    Article  CAS  Google Scholar 

  • Minister of the Environment Directive of 9.09.2002 regarding soil and ground quality standards (Dz.U. 2002 nr 165 poz. 1359) (in Polish).

  • Pettersen, J., & Hertwich, E. G. (2008). Critical review: life-cycle inventory procedures for long-term release of metals. Environmental Science and Technology, 42(13), 4639–4647.

    Article  CAS  Google Scholar 

  • Pires, M., & Querol, X. (2004). Characterization of Candiota (South Brazil) coal and combustion by-product. International Journal of Coal Geology, 60, 57–72.

    Article  CAS  Google Scholar 

  • PN-EN 12457-2:2006 (2006). Characterization of waste. Compliance test for leaching of granular waste materials and sludges - Part 2: One stage batch test at a liquid to solid ratio of 10 L/kg for materials with particle size below 4 mm (without or with size reduction) (in Polish).

  • Pöykiö, R., Nurmesniemi, H., & Keiski, R. L. (2008). Chemical, physical and leaching studies of bottom ash from a medium-sized (32 MW) municipal district heating plant for assessing its suitability for an earth construction agent and for a fertilizer used in agriculture and in forestry. Journal of Residuals Science and Technology, 5(1), 27–35.

    Google Scholar 

  • Querol, X., Fernández-Turiel, J. L., & Lόpez-Soler, A. (1995). Trace elements in coal and their behaviour during combustion in a large power station. Fuel, 74(3), 331–343.

    Article  CAS  Google Scholar 

  • Smichowski, P., Polla, G., Gόmez, D., Espinosa, A. J. F., & Lόpez, A. C. (2008). A three-step metal fractionation scheme for fly ashes collected in an Argentine thermal power plant. Fuel, 87, 1249–1258.

    Article  CAS  Google Scholar 

  • Soco, E., & Kalembkiewicz, J. (2007). Investigation of sequential leading behaviour of Cu and Zn from coal fly ash and their mobility in environmental conditions. Journal of Hazardous Materials, 145, 482–487.

    Article  CAS  Google Scholar 

  • Świetlik, R., Trojanowska, M., & Jóźwiak, M. A. (2012). Evaluation of the distribution of heavy metals and their chemical forms in ESP-fractions of fly ash. Fuel Processing Technology, 95, 109–118.

    Article  Google Scholar 

  • Świetlik, R., Trojanowska, M., Strzelecka, M., & Bocho-Janiszewska, A. (2015). Fractionation and mobility of Cu, Fe, Mn, Pb and Zn in the road dust retained on noise barriers along expressway—a potential tool for determining the effects of driving conditions on speciation of emitted particulate metals. Environmental Pollution, 196, 404–413.

    Article  Google Scholar 

  • Uliasz-Bochenczyk, A., & Mokrzycki, E. (2007). Emissions from the Polish power industry. Energy, 32, 2370–2375.

    Article  CAS  Google Scholar 

  • Verhulst, D., Buekens, A., Spencer, P. J., & Eriksson, G. (1996). Thermodynamic behavior of metal chlorides and sulfates under the conditions of incineration furnaces. Environmental Science and Technology, 30(1), 50–56.

    Article  CAS  Google Scholar 

  • Villar, M., Alava, F., Lavilla, I., & Bendicho, C. (2001). Operational speciation of thallium in environmental solid samples by electrothermal atomic absorption spectrometry according to the BCR sequential extraction scheme. Journal of Analytical Atomic Spectrometry, 16, 1424–1428.

    Article  CAS  Google Scholar 

  • Wedepohl, K. H. (1991). The composition of upper Earth’s crust and the natural cycles of selected metals. Metals in natural raw materials. Natural resources. In E. Merian (Ed.), Metals and their compounds in the environment. Occurrence, analysis and biological relevance. VCH, Weinheim.

  • WHO, (2006). Environmental health criteria 234. Elemental speciation in human health risk assessment. http://www.inchem.org/documents/ehc/ehc/ehc234.pdf.

  • Xiong, Y., Zhu, F., Zhao, L., Jiang, H., & Zhang, Z. (2014). Heavy metal speciation in various types of fly ash from municipal solid waste incinerator. Journal of Material Cycles and Waste Management, 16, 608–615.

    Article  CAS  Google Scholar 

  • Yan, R., Gauthier, D., & Flamant, G. (2001). Volatility and chemistry of trace elements in a coal combustor. Fuel, 80, 2217–2226.

    Article  CAS  Google Scholar 

  • Yang, C., Chen, Y., Peng, P., Li, C., Chang, X., & Wu, Y. (2009). Trace element transformations and partitioning during the roasting of pyrite ores in the sulfuric acid industry. Journal of Hazardous Materials, 167, 835–845.

    Article  CAS  Google Scholar 

  • Yuan, C.-G. (2009). Leaching characteristics of metals in fly ash from coal-fired power plant by sequential extraction procedure. Microchimica Acta, 165, 91–96.

    Article  CAS  Google Scholar 

  • Zhou, C., Liu, G., Yan, Z., Fang, T., & Wang, R. (2012). Transformation behavior of mineral composition and trace elements during coal gangue combustion. Fuel, 97, 644–650.

    Article  CAS  Google Scholar 

  • Zhou, C., Liu, G., Fang, T., Wu, D., & Lam, P. K. S. (2014). Partitioning and transformation behavior of toxic elements during circulated fluidized bed combustion of coal gangue. Fuel, 135, 1–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the University of Technology and Humanities in Radom research work No. 3110/35/P and Poznań University of Technology research work No. DS/03/31/DSPB/0314, which allowed us to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryszard Świetlik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Świetlik, R., Trojanowska, M., Karbowska, B. et al. Speciation and mobility of volatile heavy metals (Cd, Pb, and Tl) in fly ashes. Environ Monit Assess 188, 637 (2016). https://doi.org/10.1007/s10661-016-5648-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5648-x

Keywords

Navigation