Skip to main content
Log in

Formation of nitrogenous disinfection by-products in 10 chlorinated and chloraminated drinking water supply systems

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The presence of nitrogenous disinfection by-products (N-DBPs) in drinking water supplies is a public health concern, particularly since some N-DBPs have been reported to be more toxic than the regulated trihalomethanes and haloacetic acids. In this paper, a comprehensive evaluation of the presence of N-DBPs in 10 drinking water supply systems in Western Australia is presented. A suite of 28 N-DBPs, including N-nitrosamines, haloacetonitriles (HANs), haloacetamides (HAAms) and halonitromethanes (HNMs), were measured and evaluated for relationships with bulk parameters in the waters before disinfection. A number of N-DBPs were frequently detected in disinfected waters, although at generally low concentrations (<10 ng/L for N-nitrosamines and <10 μg/L for other N-DBPs) and below health guideline values where they exist. While there were no clear relationships between N-DBP formation and organic nitrogen in the pre-disinfection water, N-DBP concentrations were significantly correlated with dissolved organic carbon (DOC) and ammonia, and these, in addition to high bromide in one of the waters, led to elevated concentrations of brominated HANs (26.6 μg/L of dibromoacetonitrile). There were significant differences in the occurrence of all classes of N-DBPs between chlorinated and chloraminated waters, except for HNMs, which were detected at relatively low concentrations in both water types. Trends observed in one large distribution system suggest that N-DBPs can continue to form or degrade within distribution systems, and redosing of disinfectant may cause further by-product formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bond, T., Huang, J., Graham, N. J. D., & Templeton, M. R. (2014). Examining the interrelationship between DOC, bromide and chlorine dose on DBP formation in drinking water—a case study. Science of the Total Environment, 470–471, 469–479.

    Article  Google Scholar 

  • Bond, T., Huang, J., Templeton, M. R., & Graham, N. (2011). Occurrence and control of nitrogenous disinfection by-products in drinking water—a review. Water Research, 45(15), 4341–4354.

    Article  CAS  Google Scholar 

  • Bond, T., Templeton, M. R., & Graham, N. (2012). Precursors of nitrogenous disinfection by-products in drinking water––a critical review and analysis. Journal of Hazardous Materials, 235–236(0), 1–16.

    Article  Google Scholar 

  • Bond, T., Templeton, M. R., Mokhtar Kamal, N. H., Graham, N., & Kanda, R. (2015). Nitrogenous disinfection byproducts in English drinking water supply systems: occurrence, bromine substitution and correlation analysis. Water Research, 85, 85–94.

    Article  CAS  Google Scholar 

  • Bougeard, C. M. M., Goslan, E. H., Jefferson, B., & Parsons, S. A. (2010). Comparison of the disinfection by-product formation potential of treated waters exposed to chlorine and monochloramine. Water Research, 44(3), 729–740.

    Article  CAS  Google Scholar 

  • Brisson, I. J., Levallois, P., Tremblay, H., Serodes, J., Deblois, C., Charrois, J., Taguchi, V., Boyd, J., Li, X. F., & Rodriguez, M. J. (2013). Spatial and temporal occurrence of N-nitrosamines in seven drinking water supply systems. Environmental Monitoring and Assessment, 185(9), 7693–7708.

    Article  CAS  Google Scholar 

  • CDPH. (2011). California Department of Public Health: NDMA and other nitrosamines—drinking water issues. http://www.cdph.ca.gov/certlic/drinkingwater/Pages/NDMA.aspx.

  • Charrois, J. W. A., Arend, M. W., Froese, K. L., & Hrudey, S. E. (2004). Detecting N-nitrosamines in drinking water at nanogram per liter levels using ammonia positive chemical ionization. Environmental Science & Technology, 38(18), 4835–4841.

    Article  CAS  Google Scholar 

  • Charrois, J. W. A., Boyd, J. M., Froese, K. L., & Hrudey, S. E. (2007). Occurrence of N-nitrosamines in Alberta public drinking-water distribution systems. Journal of Environmental Engineering and Science, 6(1), 103–114.

    Article  CAS  Google Scholar 

  • Chu, W.-H., Gao, N.-Y., Deng, Y., Templeton, M. R., & Yin, D.-Q. (2011). Formation of nitrogenous disinfection by-products from pre-chloramination. Chemosphere, 85(7), 1187–1191.

    Article  CAS  Google Scholar 

  • Chu, W. H., Gao, N., Yin, D., Krasner, S. W., & Templeton, M. R. (2012). Trace determination of 13 haloacetamides in drinking water using liquid chromatography triple quadrupole mass spectrometry with atmospheric pressure chemical ionization. Journal of Chromatography A, 1235, 178–181.

    Article  CAS  Google Scholar 

  • Chu, W. H., Gao, N. Y., & Deng, Y. (2010a). Formation of haloacetamides during chlorination of dissolved organic nitrogen aspartic acid. Journal of Hazardous Materials, 173(1–3), 82–86.

    Article  CAS  Google Scholar 

  • Chu, W. H., Gao, N. Y., Deng, Y., & Krasner, S. W. (2010b). Precursors of dichloroacetamide, an emerging nitrogenous DBP formed during chlorination or chloramination. Environmental Science & Technology, 44(10), 3908–3912.

    Article  CAS  Google Scholar 

  • Chu, W. H., Gao, N. Y., Yin, D. Q., & Krasner, S. W. (2013). Formation and speciation of nine haloacetamides, an emerging class of nitrogenous DBPs, during chlorination or chloramination. Journal of Hazardous Materials, 260, 806–812.

    Article  CAS  Google Scholar 

  • Cowman, G. A., & Singer, P. C. (1996). Effect of bromide ion on haloacetic acid speciation resulting from chlorination and chloramination of aquatic humic substances. Environmental Science & Technology, 30(1), 16–24.

    Article  CAS  Google Scholar 

  • DWI. (2008). (Drinking Water Inspectorate) Guidance on the Water Supply (Water Quality) Regulations 2000 Specific to N-nitrosodimethylamine (NDMA) Concentrations in Drinking Water. London: DWI.

  • Gerecke, A. C., & Sedlak, D. L. (2003). Precursors of N-nitrosodimethylamine in natural waters. Environmental Science & Technology, 37(7), 1331–1336.

    Article  CAS  Google Scholar 

  • Goslan, E. H., Krasner, S. W., Bower, M., Rocks, S. A., Holmes, P., Levy, L. S., & Parsons, S. A. (2009). A comparison of disinfection by-products found in chlorinated and chloraminated drinking waters in Scotland. Water Research, 43(18), 4698–4706.

    Article  CAS  Google Scholar 

  • Goslan, E. H., Krasner, S. W., Villanueva, C. M., Carrasco Turigas, G., Toledano, M. B., Kogevinas, M., Stephanou, E. G., Cordier, S., Gražulevičienė, R., Parsons, S. A., & Nieuwenhuijsen, M. J. (2014). Disinfection by-product occurrence in selected European waters. Journal of Water Supply: Research and Technology-AQUA, 63(5), 379–390.

    Article  CAS  Google Scholar 

  • HealthCanada. (2012). Guidelines for Canadian Drinking Water Quality—Summary Table. Water, Air and Climate Change Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario.

  • Hoigné, J., & Bader, H. (1988). The formation of trichloronitromethane (chloropicrin) and chloroform in a combined ozonation/chlorination treatment of drinking water. Water Research, 22(3), 313–319.

    Article  Google Scholar 

  • Hrudey, S. E. (2009). Chlorination disinfection by-products, public health risk tradeoffs and me. Water Research, 43(8), 2057–2092.

    Article  CAS  Google Scholar 

  • Hu, J., Song, H., Addison, J. W., & Karanfil, T. (2010). Halonitromethane formation potentials in drinking waters. Water Research, 44(1), 105–114.

    Article  CAS  Google Scholar 

  • Hua, G. H., & Reckhow, D. A. (2007). Comparison of disinfection byproduct formation from chlorine and alternative disinfectants. Water Research, 41(8), 1667–1678.

    Article  CAS  Google Scholar 

  • Hua, G. H., Reckhow, D. A., & Kim, J. (2006). Effect of bromide and iodide ions on the formation and speciation of disinfection byproducts during chlorination. Environmental Science & Technology, 40(9), 3050–3056.

    Article  CAS  Google Scholar 

  • Huang, H., Wu, Q. Y., Hu, H. Y., & Mitch, W. A. (2012). Dichloroacetonitrile and dichloroacetamide can form independently during chlorination and chloramination of drinking waters, model organic matters, and wastewater effluents. Environmental Science & Technology, 46(19), 10624–10631.

    Article  CAS  Google Scholar 

  • IARC. (1978). International Agency for Research on Cancer: monographs on the evaluation of carcinogenic risk of chemicals to humans: some N-nitroso compounds: vol. 17; WHO; Lyon, France.

  • Kemper, J. M., Westerhoff, P., Dotson, A., & Mitch, W. A. (2009). Nitrosamine, dimethylnitramine, and chloropicrin formation during strong base anion-exchange treatment. Environmental Science & Technology, 43(2), 466–472.

    Article  CAS  Google Scholar 

  • Krasner, S. W., McGuire, M. J., Jacangelo, J. G., Patania, N. L., Reagan, K. M., & Aieta, E. M. (1989). The occurrence of disinfection by-products in United-States drinking-water. Journal American Water Works Association, 81(8), 41–53.

    CAS  Google Scholar 

  • Krasner, S. W., Weinberg, H. S., Richardson, S. D., Pastor, S. J., Chinn, R., Sclimenti, M. J., Onstad, G. D., & Thruston, A. D. (2006). Occurrence of a new generation of disinfection byproducts. Environmental Science & Technology, 40(23), 7175–7185.

    Article  CAS  Google Scholar 

  • Kristiana, I., Joll, C., & Heitz, A. (2012). Analysis of halonitriles in drinking water using solid-phase microextraction and gas chromatography-mass spectrometry. Journal of Chromatography A, 1225, 45–54.

    Article  CAS  Google Scholar 

  • Kristiana, I., Lethorn, A., Joll, C., & Heitz, A. (2014). To add or not to add: the use of quenching agents for the analysis of disinfection by-products in water samples. Water Research, 59, 90–98.

    Article  CAS  Google Scholar 

  • Lee, W., Westerhoff, P., & Croue, J.-P. (2007). Dissolved organic nitrogen as a precursor for chloroform, dichloroacetonitrile, N-nitrosodimethylamine, and trichloronitromethane. Environmental Science & Technology, 41(15), 5485–5490.

    Article  CAS  Google Scholar 

  • Liew, D., Culbert, J., Linge, K., Farré, M. J., Knight, N., Morran, J., Halliwell, D., Newcombe, G., & Charrois, J. W. A. (2015). National occurrence of N-nitrosodimethylamine (NDMA). An investigation of 38 Australian drinking water supplies. In B. M. T. Karanfil, P. Westerhoff, & Y. Xie (Eds.), Recent advances in disinfection by-products (Vol. 1190, pp. 135–149). Washington DC: American Chemical Society.

    Chapter  Google Scholar 

  • Liew, D., Linge, K. L., Heitz, A., & Joll, C. A. (2012a). Nitrogenous DBPs in drinking water: toxicity, regulation, analysis, occurrence and control.

    Google Scholar 

  • Liew, D., Linge, K. L., Joll, C. A., Heitz, A., & Charrois, J. W. A. (2012b). Determination of halonitromethanes and haloacetamides: an evaluation of sample preservation and analyte stability in drinking water. Journal of Chromatography A, 1241, 117–122.

    Article  CAS  Google Scholar 

  • Luh, J., & Mariñas, B. J. (2012). Bromide ion effect on N-nitrosodimethylamine formation by monochloramine. Environmental Science & Technology, 46(9), 5085–5092.

    Article  CAS  Google Scholar 

  • Luo, Q., Wang, D. H., & Wang, Z. J. (2012). Occurrences of nitrosamines in chlorinated and chloraminated drinking water in three representative cities, China. Science of the Total Environment, 437, 219–225.

    Article  CAS  Google Scholar 

  • McGuire, M. J., McLain, J. L., & Oblensky, A. (2002). Information Collection Rule Data Analysis. Denver, CO: American Water Works Association Research Foundation and AWWA.

  • Morran, J., Whittle, M., Fabris, R. B., Harris, M., Leach, J. S., Newcombe, G., & Drikas, M. (2011). Nitrosamines from pipeline materials in drinking water distribution systems. Journal American Water Works Association, 103(10), 76.

    CAS  Google Scholar 

  • Muellner, M. G., Wagner, E. D., McCalla, K., Richardson, S. D., Woo, Y.-T., & Plewa, M. J. (2007). Haloacetonitriles vs. regulated haloacetic acids: are nitrogen-containing DBPs more toxic? Environmental Science & Technology, 41(2), 645–651.

    Article  CAS  Google Scholar 

  • Najm, I., & Trussell, R. R. (2001). NDMA formation in water and wastewater. Journal AWWA, 93(2), 92–99.

    Google Scholar 

  • NHMRC-NRMMC. (2011). Australian Drinking Water Guidelines 6 2011: National Health and Medical Research Council, National Resource Management Ministerial Council, Australia.

  • Oliver, B. G. (1983). Dihaloacetonitriles in drinking-water—algae and fulvic-acid as precursors. Environmental Science & Technology, 17(2), 80–83.

    Article  CAS  Google Scholar 

  • Pensabene, J. W., Fiddler, W., & Gates, R. A. (1995). Nitrosamine formation and penetration in hams processed in elastic rubber nettings—N-nitrosodibutylamine and N-nitrosodibenzylamine. Journal of Agricultural and Food Chemistry, 43(7), 1919–1922.

    Article  CAS  Google Scholar 

  • Plewa, M. J., Muellner, M. G., Richardson, S. D., Fasano, F., Buettner, K. M., Woo, Y.-T., McKague, A. B., & Wagner, E. D. (2008). Occurrence, synthesis, and mammalian cell cytotoxicity and genotoxicity of haloacetamides: an emerging class of nitrogenous drinking water disinfection byproducts. Environmental Science & Technology, 42(3), 955–961.

    Article  CAS  Google Scholar 

  • Plewa, M. J., Wagner, E. D., Jazwierska, P., Richardson, S. D., Chen, P. H., & McKague, A. B. (2004). Halonitromethane drinking water disinfection byproducts: chemical characterization and mammalian cell cytotoxicity and genotoxicity. Environmental Science & Technology, 38(1), 62–68.

    Article  CAS  Google Scholar 

  • Pozzi, R., Bocchini, P., Pinelli, F., & Galletti, G. C. (2011). Determination of nitrosamines in water by gas chromatography/chemical ionization/selective ion trapping mass spectrometry. Journal of Chromatography A, 1218(14), 1808–1814.

    Article  CAS  Google Scholar 

  • Reckhow, D. A., Platt, T. L., MacNeill, A. L., & McClellan, J. N. (2001). Formation and degradation of dichloroacetonitrile in drinking waters. Journal of Water Supply Research and Technology-AQUA, 50(1), 1–13.

    CAS  Google Scholar 

  • Richardson, S. D. (2003). Disinfection by-products and other emerging contaminants in drinking water. Trac-Trends in Analytical Chemistry, 22(10), 666–684.

    Article  CAS  Google Scholar 

  • Richardson, S. D., Plewa, M. J., Wagner, E. D., Schoeny, R., & DeMarini, D. M. (2007). Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutation Research-Reviews in Mutation Research, 636(1–3), 178–242.

    Article  CAS  Google Scholar 

  • Rodriguez, M. J., Sérodes, J.-B., Levallois, P., & Proulx, F. (2007). Chlorinated disinfection by-products in drinking water according to source, treatment, season, and distribution location. Journal of Environmental Engineering and Science, 6(4), 355–365.

    Article  CAS  Google Scholar 

  • Russell, C. G., Blute, N. K., Via, S., Wu, X., & Chowdhury, Z. (2012). Nationwide assessment of nitrosamine occurrence and trends. Journal American Water Works Association, 104(3), 57–58.

    CAS  Google Scholar 

  • Shah, A. D., & Mitch, W. A. (2012). Halonitroalkanes, halonitriles, haloamides, and N-nitrosamines: a critical review of nitrogenous disinfection byproduct formation pathways. Environmental Science & Technology, 46(1), 119–131.

    Article  CAS  Google Scholar 

  • Shanks, C. M., Serodes, J. B., & Rodriguez, M. J. (2013). Spatio-temporal variability of non-regulated disinfection by-products within a drinking water distribution network. Water Research, 47(9), 3231–3243.

    Article  Google Scholar 

  • Simpson, K. L., & Hayes, K. P. (1998). Drinking water disinfection by-products: an Australian perspective. Water Research, 32(5), 1522–1528.

    Article  CAS  Google Scholar 

  • Templeton, M. R., & Chen, Z. (2010). NDMA and seven other nitrosamines in selected UK drinking water supply systems. Journal of Water Supply Research and Technology-AQUA, 59(4), 277–283.

    Article  CAS  Google Scholar 

  • Thompson, H. C., Billedeau, S. M., Miller, B. J., Hansen, E. B., Freeman, J. P., & Wind, M. L. (1984). Determination of N-nitrosamines and N-nitrosamine precursors in rubber nipples from baby pacifiers by gas-chromatography thermal energy analysis. Journal of Toxicology and Environmental Health, 13(4–6), 615–632.

    Article  CAS  Google Scholar 

  • USEPA. (2005). Definition and Procedure for the Determination of the Method Detection Limit Title 40 Code of Federal Regulations, Part 136, Appendix B, Revision 1.11: USEPA.

  • USEPA. (2007). Drinking water standards and health advisories table. http://www.epa.gov/region09/water/drinking/files/dwsha_0607.pdf. Accessed 7 Feb 2012.

  • Wang, W., Ren, S., Zhang, H., Yu, J., An, W., Hu, J., & Yang, M. (2011). Occurrence of nine nitrosamines and secondary amines in source water and drinking water: potential of secondary amines as nitrosamine precursors. Water Research, 45(16), 4930–4938.

    Article  CAS  Google Scholar 

  • Weinberg, H. S., Krasner, S. W., Richardson, S. D., & Thruston, A. D., Jr. (2002). The occurrence of disinfection by-products (DBPs) of health concern in drinking water: results of a nationwide DBP occurrence study; EPA/600/R-02/068; U.S. EPA: Athens, GA.

  • Wilczak, A., Assadi-Rad, A., Lai, H. H., Hoover, L. L., Smith, J. F., Berger, R., Rodigari, F., Beland, J. W., Lazzelle, L. J., Kinicannon, E. G., Baker, H., & Heaney, C. T. (2003). Formation of NDMA in chloraminated water coagulated with DADMAC cationic polymer. Journal American Water Works Association, 95(9), 94–106.

    Google Scholar 

  • Williams, D. T., LeBel, G. L., & Benoit, F. M. (1997). Disinfection by-products in Canadian drinking water. Chemosphere, 34(2), 299–316.

    Article  CAS  Google Scholar 

  • Yang, X., Shen, Q. Q., Guo, W. H., Peng, J. F., & Liang, Y. M. (2012). Precursors and nitrogen origins of trichloronitromethane and dichloroacetonitrile during chlorination/chloramination. Chemosphere, 88(1), 25–32.

    Article  CAS  Google Scholar 

  • Zeng, T., & Mitch, W. A. (2016). Impact of nitrification on the formation of N-nitrosamines and halogenated disinfection byproducts within distribution system storage facilities. Environmental Science & Technology, 50(6), 2964–2973.

    Article  CAS  Google Scholar 

  • Zhao, Y. Y., Boyd, J., Hrudey, S. E., & Li, X. F. (2006). Characterization of new nitrosamines in drinking water using liquid chromatography tandem mass spectrometry. Environmental Science & Technology, 40(24), 7636–7641.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Andrew Chan and Jace Tan for their assistance in N-DBP analysis, Geoff Chidlow for GC-MS technical assistance and Jeffrey Charrois (Alberta Environment and Sustainable Resource Development, Canada) for strategic project direction. We thank Rino Trolio, Ralph Henderson, Liza Breckler and Fern Bradder (Water Corporation of Western Australia) for advice and assistance. This study was funded by the Australian Research Council (ARC Linkage project LP110100548), Water Corporation of Western Australia, Water Research Australia and Curtin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah Liew.

Electronic supplementary material

ESM 1

(DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liew, D., Linge, K.L. & Joll, C.A. Formation of nitrogenous disinfection by-products in 10 chlorinated and chloraminated drinking water supply systems. Environ Monit Assess 188, 518 (2016). https://doi.org/10.1007/s10661-016-5529-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5529-3

Keywords

Navigation