Skip to main content

Advertisement

Log in

The effect of different land uses on arbuscular mycorrhizal fungi in the northwestern Black Sea Region

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The object of the present research was to establish correlations between the status of root colonization of arbuscular mycorrhizal fungi (AMF) and different types of land use. In order to achieve this aim, rhizosphere soil samples from grassland crops were taken during June and July of 2013 in order to use for determining several soil characteristics. The 27 different taxa and 60 soil samples were collected from the rhizosphere level in the study areas. The existence of AMF was confirmed in 100 % of these plants with different rations of colonization (approximately 12–89 %). Bromus racemosus L. (pasture) was the most dense taxon with the percentage of AMF colonization of 88.9 %, and Trifolium pratense L. (forest) was the least dense taxon with the percentage of AMF colonization of 12.2 % (average 52.0 %). As a result of the statistical analysis, a positive relationship was found between the botanical composition of legumes and AMF colonization (r = 0.35; p = 0.006). However, a negative relationship was determined between botanical composition of other plant families and AMF colonization (r = −0.39; p = 0.002). In addition, a positive relationship was defined between soil pH (H2O) and the root colonization of AMF (r = 0.35; p = 0.005). The pasture had the highest mean value of AMF root colonization. However, the pasture and gap in the forest were in the same group, according to the results of the S-N-K test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allison, L. E., & Moodie, C. D. (1965). Carbonate. In C. A. Black (Ed.), Methods of soil analysis (pp. 1379–1396). Wisconsin: American Society of Agronomy.

    Google Scholar 

  • Aldon, E. F. (1975). Endomycorrhizae enhance survival and growth of four-wing saltbush on coalmine spoils. USDA Forest Service Research Note RM-294. Fort Collins, Colorado: Rocky Mountain Forest and Range Experiment Station.

    Google Scholar 

  • Atalay, I. (2011). Climate Atlas of Turkey (in Turkish). Istanbul,Turkey: Inkılâp Bookstore Press.

    Google Scholar 

  • Azcon-Aguilar, C., Jaizme-Vega, M. C., & Calvet, C. (2002). The contribution of arbuscular mycorrhizal fungi to the control of soil-born plant pathogens. In S. Gianinazzi, H. Schuepp, J. M. Barea, & K. Haselwandter (Eds.), Mycorrhizal technology in agriculture, pp: 187, Switzerland.

    Google Scholar 

  • Bashan, Y., Khaosaad, T., Salazar, B. G., Ocampo, J. A., Wiemken, A., Oehl, F., & Vierheilig, H. (2007). Mycorrhizal characterization of the boojum tree, Fouquieria columnaris, an endemic ancient tree from the Baja California Peninsula, Mexico. Trees, 21, 329e335.

    Article  Google Scholar 

  • Blake, G. R. (1965). Bulk density. In C. A. Black (Ed.), Methods of soil analysis (pp. 374–390). Wisconsin: American Society of Agronomy.

    Google Scholar 

  • Bolan, N. S., Robson, A. D., & Barrow, N. J. (1987). Effects of vesicular-arbuscular Mycorhizae the availability of iron phosphates to plants. Plant and Soil, 99(p), 401–410.

    Article  CAS  Google Scholar 

  • Borie, F., Rubio, R., Rouanet, J. L., Morales, A., Borie, G., & Rojas, C. (2006). Effects of tillage systems on soil characteristics, glomalin and mycorrhizal propagules in a Chilean Ultisol. Soil and Tillage Research, 88(1–2), 253–261.

    Article  Google Scholar 

  • Bothe, H., Turnau, K., & Regvar, M. (2010). The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats. Mycorrhiza, 20(7), 445–457.

    Article  Google Scholar 

  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54, 464–465.

    Article  Google Scholar 

  • Brady, N. C. (1990). The nature and properties of soils (9th ed.). New York: Macmillian Publishing.

    Google Scholar 

  • Call, C. A., & McKell, C. M. (1985). Endomycorrhizae enhance growth of shrub species in processed oil shale and disturbed native soil. Journal of Range Management, 38, 258–261.

    Article  Google Scholar 

  • Canfield, R. H. (1941). Application of the line interception method in sampling range vegetation. J. Forestry, 39, 388–394.

    Google Scholar 

  • Cuenca, G., DeAndrade, Z., & Escalante, G. (1998). Arbuscular mycorrhizae in the rehabilitation of fragile degraded tropical lands. Biology and Fertility of Soils, 26, 107–111.

    Article  Google Scholar 

  • Davison, J., Öpik, M., Daniell, T. M., Moora, M., & Zobel, M. (2011). Arbuscular mycorrhizal fungal communities in plant roots are not random assemblages. FEMS Microbiology Ecology, 78, 103–115.

    Article  CAS  Google Scholar 

  • Dell Amico, J., Torrecillas, A., Rodriguez, P., Morte, A., & Sanchez-Blanco, M. J. (2002). Responses of tomato plants associated with the arbuscular mycorrhizal fungus Glomus clarum during drought and recovery. Journal of Agricultural Science, 138, 387–393.

    Google Scholar 

  • Demir, S. (1998). Bazı kültür bitkilerinde Vesiküler-Arbusküler Mikorrhiza (VAM) oluşumu ve bunun bitki gelişimi ve dayanıklılıktaki rolü üzerinde araştırmalar. Ph D. Thesis, Ege University, Graduate School of Natural and Applied Science, 114 p. İzmir.

    Google Scholar 

  • Demir, S., & Onoğur, E. (1999). Bitkilerde Vesiküler-Arbüsküler Mikoriza oluşumunun bitki besleme ve bitki korumadaki önemi. Anadolu Dergisi, 9(2), 12–32.

    Google Scholar 

  • Demir, S., Sipahioğlu, H. M., Kaya, I., Akköprü, A., Usta, M., & Aysan, E. (2007). Van ve çevresinde Gramineae familyasına ait bitkilerde Arbüsküler Mikorhizal Fungusların (AMF) tür çeşitliliğinin Nested-PCR yöntemiyle belirlenmesi. The Scientific & Technological Research Council of Turkey (TÜBİTAK) -TOGTAG 3367.Project Final Report, 38 p.

  • Eom, A. H., Wilson, G. W. T., & Hartnett, D. C. (2001). Effects of ungulate grazers on arbuscular mycorrhizal symbiosis and fungal community structure in tallgrass prairie. Mycologia, 93, 233–242.

    Article  Google Scholar 

  • Escudero, V., & Mendoza, R. (2005). Seasonal variation of arbuscular mycorrhizal fungi in temperate grasslands along a wide hydrologic gradient. Mycorhiza, 15, 291–299.

    Article  Google Scholar 

  • Finlay, R. D. (2008). Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. Journal of Experimental Botany, 59, 1115–1126.

    Article  CAS  Google Scholar 

  • Giovanetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytologist, 84, 489–500.

    Article  Google Scholar 

  • Gökbulak, F. (2013). Vegetation Analysis Methods. İstanbul: Yazın Basın Yayın Matbaacılık.

    Google Scholar 

  • Graham, J. H. (2000). Current advances in mycorrhizae research (pp. 111–126). St. Paul: APS Press.

    Google Scholar 

  • Humphreys, C. P., Franks, P. J., Rees, M., Bidartondo, M. I., Leake, J. R., & Beerling, D. J. (2010). Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nature Communications. doi:10.1038/ncomms1105.

    Google Scholar 

  • Jansa, J., Erb, A., Oberholzer, H. R., Smılauer, P., & Egli, S. (2014). Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. doi:10.1111/mec.12706. Molecular Ecology.

    Google Scholar 

  • Jha, A., Kumar, A., Saxena, R. K., Kamalvanshi, M., & Chakravarty, N. (2011). Effect of arbuscular mycorrhizal inoculations on seedling growth and biomass productivity of two bamboo species. Indian Journal of Microbiology, 52, 281–285.

    Article  Google Scholar 

  • Kara, Ö., Bolat, İ., Çakıroğlu, K., & Öztürk, M. (2008). Plant canopy effects on litter accumulation and soil microbial biomass in two temperate forests. Biology and Fertility of Soils, 45, 193–198.

    Article  Google Scholar 

  • Kaya, Z., & Başaran, S. (2006). Bartın Florasına Katkılar. GÜ Orman Fakültesi Dergisi, 6(1), 40–62.

    Google Scholar 

  • Koomenn, I., Grace, C., & Hayman, D. S. (1987). Effectiveness of single and multiple mycorrhizal inocula on growth or clover and strawberry plants at two soil pHs. Soil Biology and Biochemistry, 16, 539–544.

    Article  Google Scholar 

  • Landis, F. C., Gargas, A., & Givnish, T. J. (2004). Relationships among arbuscular mycorrhizal fungi, vascular plants and environmental conditions in oak savannas. New Phytologist, 164, 493–504.

    Article  Google Scholar 

  • Lekberg, Y., Koide, R. T., Rohr, J. R., Aldrich-Wolfe, L., & Morton, J. B. (2007). Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. Journal of Ecology, 95, 95–100.

    Article  Google Scholar 

  • Leopold, H. J. (1990). Beimfung von Klee mit VA - mykorrhiza und rhizobium zur Ertags und Qualittssteigerung. Gießen Uni: Doktora Tezi.

    Google Scholar 

  • Li, X. L., Marschner, H., & George, E. (1991). Extension of the phosphorus depletion zone in VA mycorrhizal white clover in a calcareous soil. Plant and Soil, 135, 41–48.

    Article  Google Scholar 

  • Manske, G. G. B., Ortiz-Monasterio, J. I., & Vlek, P. L. G. (2001). Techniques for measuring genetic diversity in roots. Chapter 18, pp: 209. In M. P. Reynold, J. I. Ortiz-Monasterio, & A. McNab (Eds.), Application of Physiology in Wheat Breeding.

    Google Scholar 

  • Mathur, N., Singh, J., Bohra, S., & Vyas, A. (2007). Arbuscular mycorrhizal status of medicinal halophytes in saline areas of Indian Thar desert. International Journal of Soil Science, 2, 119–127.

    Article  Google Scholar 

  • Mendoza, R., Goldmann, V., Rivas, J., Escudero, V., Pagani, E., Collantes, M., & Marbán, L. (2002). Poblaciones de hongos micorrízicos arbusculares en relación con propiedades del suelo y planta hospedante en pastizales de Tierra del Fuego. Ecol Austr, 12, 9–20.

    Google Scholar 

  • Mendoza, R., Cabello, M., Anchorena, J., & García, M. L. (2011). Soil parameters and host plants associated with arbuscular mycorrhizae in the grazed Magellanic steppe of Tierra del Fuego. Agriculture, Ecosystems & Environment, 140, 411–418.

    Article  Google Scholar 

  • Miller, R. M., & Jastrow, J. D. (2000). Mycorrhizal fungi influence soil structure. In D. Kapulnik Yve & D. Douds Jr. (Eds.), Arbuscular mycorrhizas: physiology and function (pp. 3–18). Kluwer Academic Publishers: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Morton, J. B. (1988). Taxonomy of VA mycorrhizal fungi: classification, nomenclature and identification. Mycotaxon, 32, 267–324.

    Google Scholar 

  • Morton, J. B., & Bentivenga, S. P. (1994). Levels of diversity in endomycorrhizal fungi (Glomales, Zygomycetes) and their role in defining taxonomic and non-taxonomic groups. Plant and Soil, 159, 47–59.

    Google Scholar 

  • Mukerji, K. G., Chamola, B. P., & Singh, J. (2000). Mycorrhizal biology. New York: Kluwer Academic Plenum Publishers.

    Book  Google Scholar 

  • Oehl, F., Laczko, E., Bogenrieder, A., Stahr, K., Bösch, R., van der Heijden, M., & Sieverding, E. (2010). Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biology & Biochemistry, 42, 724–738.

    Article  CAS  Google Scholar 

  • Ortaş, İ. (2002). Do plants depend on mycorrhizae in terms of nutrient requirement? Çanakkale: International conference on sustainable land use and management.

    Google Scholar 

  • Öztürk, M., Bolat, İ., & Ergün, A. (2015). Influence of air–soil temperature on leaf expansion and LAI of Carpinus betulus trees in a temperate urban forest patch. Agricultural and Forest Meteorology, 200(2015), 185–191.

    Article  Google Scholar 

  • Palta, S. (2012). Bartın yöresi çayır-mera alanlarında bulunan Gramineae familyasına ait bitkilerde Arbusküler Mikorizal Fungusların (AMF) varlığının ve ekolojik özelliklerinin belirlenmesi. Bartın: Doktora Tezi, Fen Bilimleri Enstitüsü, Bartın Üniversitesi.

    Google Scholar 

  • Palta, Ş., Demir, S., Şengönül, K., Kara, Ö., & Şensoy, H. (2012). Bartın Yöresi Ardıç Yaylası Graminelerindeki Arbusküler Mikorizal Fungusların (AMF) Belirlenmesi. Bartın Üniversitesi, Orman Fakültesi Dergisi, Cilt: 14. Sayı, 22, 72–81.

    Google Scholar 

  • Palta, S., Kara, O., Demir, S., Sengönül, K., & Sensoy, H. (2013). Effects of soil properties and botanic composition on arbuscular mycorrhizal fungus (AMF) from Gramineae family plants. Orman Fakültesi Dergisi, Cilt: Bartın Üniversitesi. 15, Sayı: 1-2, 22-31, ISSN: 1302-0943, EISSN: 1308-5875. Bartın.

    Google Scholar 

  • Phillips, J. M., & Hayman, D. S. (1970). Improved procedure for cleaning roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55, 158–161.

    Article  Google Scholar 

  • Picone, C. (2000). Diversity and abundance of arbuscular-mycorrhizal fungus spores in tropical forest and pasture. Biotropica, 32, 734–750.

    Article  Google Scholar 

  • Redecker, D., Kodner, R., & Graham, L. E. (2000). Glomalean fungi from the Ordovician. Science, 289, 1920–1921.

    Article  CAS  Google Scholar 

  • Requena, N., Pérez-Solís, E., Azcón-Aguilar, C., et al. (2001). Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Applied and Environmental Microbiology, 67(2), 495–498.

    Article  CAS  Google Scholar 

  • Rhodes, L. H. (1980). The use of mycorrhizae in crop production systems. Outlook on Agriculture, 10(6), 275–281.

    Google Scholar 

  • Rhoades, J. D. (1982). Soluble Salts. In A.L. Page (Ed.), Methods of soil analysis, part 2 chemical and microbiological properties (pp. 149–157). Madison: SSSA Book series No: 9.

    Google Scholar 

  • Rich, T., Rebane, M., Fasham, M., McMeechan, F., & Dobson, D. (2005). Ground and shrub vegetation. In D. Hill, F. Fasham, G. Tucker, M. Shrewy, & P. Shaw (Eds.), Handbook of biodiversity methods: survey, evaluation and monitoring (pp. 201–222). Cambrigde: Cambridge University Press.

    Google Scholar 

  • Rowell, D. L. (1994). Soil science: methods and applications. Singapore: Longman Scientific and Technical.

    Google Scholar 

  • Saito, M., & Saito, M. (2000). Symbiotic exchange of nutrients in Arbuscular Mycorrhizas: Transport and transfer of phosphorus. In K. Y. v. Douds D (Ed.), Arbuscular mycorrhizas: physiology and function (pp. 85–106). New York: Kluwer Academic Publishers.

  • Schenck, N. C., & Smith, G. S. (1982). Additional new and unreported species of mycorrhizal fungi (Endogonaceae) from Florida. Mycologia, 74(1), 77–93.

    Article  Google Scholar 

  • Shukla, A., Kumar, A., Jha, A., Salunkhe, O., & Vyas, D. (2012). Soil moisture levels affect growth and mycorrhization of agroforestry plants. Biology and Fertility of Soils. doi:10.1007/s00374-012-0744-8.

    Google Scholar 

  • Shukla, A., Vyas, D., & Jha, A. (2013). Soil depth: an overriding factor for distribution of arbuscular mycorrhizal fungi. Journal of Soil Science and Plant Nutrition, 13(1), 23–33.

    Google Scholar 

  • Siddiqui, Z. A., Akhtar, M. S., & Futai, K. (2008). Mycorrhizae: sustainable agriculture and forestry. Dordrecht: Springer.

    Book  Google Scholar 

  • Siqueira, J. O., Hubbell, D. H., & Mahmud, A. W. (1984) Effect of liming on spore germination and germ tube growth and root colonization by Vesiculer-Arbuscular Mycorrhizal Fungi. Plant and Soil, 76, 115–124.

  • SPSS Inc. (2007). SPSS for Windows, Version 16.0. Chicago: SPSS Inc.

    Google Scholar 

  • Sturmer, S. L., & Siqueira, J. O. (2011). Species richness and spore abundance of arbuscular mycorrhizal fungi across distinct land uses in Western Brazilian Amazon. Mycorrhiza, 21, 255–267.

    Article  Google Scholar 

  • Su, Y. Y., & Guo, L. D. (2007). Arbuscular mycorrhizal fungi in nongrazed, restored and over-grazed grassland in the Inner Mongolia steppe. Mycorrhiza, 17, 689–693.

    Article  Google Scholar 

  • Tao, L., & Zhiwei, Z. (2005). Arbuscular mycorrhizas in a hot and arid ecosystem in southwest China. Applied Soil Ecology, 29, 135–141.

    Article  Google Scholar 

  • Tian, H., Gai, J. P., Christin, P., & Li, X. L. (2009). Arbuscular mycorrhizal fungi in degraded typical steppe of Inner Mongolia. Land Degradation and Development, 20, 41–54.

    Article  Google Scholar 

  • TSMS (Turkish State Meteorological Service). (2013). Daily meteorological data. Ankara, Turkey: TSMS(Turkish State Meteorological Service).

    Google Scholar 

  • Uhlmann, E., Görke, C., Petersen, A., & Oberwinkler, F. (2004a). Comparison of species diversity of arbuscular mycorrhizal fungi in winter-rainfall areas of South Africa and summerrainfall areas of Namibia. Mycological Progress, 3, 267–274.

    Article  Google Scholar 

  • Uhlmann, E., Görke, C., Petersen, A., & Oberwinkler, F. (2004b). Arbuscular mycorrhizae from semiarid regions of Namibia. Canadian Journal of Botany, 82, 645–653.

    Article  CAS  Google Scholar 

  • Viebrock, H. (1998). Ursachen der Erhöhung des Phosphat-Aneignungs-Vermögens Von Pflanzen Durch VA- Mykorrhiza. Germany: Ph. D. Thesis, Universitat Göttingen.

    Google Scholar 

  • Yang, F. Y., Li, G. Z., Zhang, D. E., Christie, P., Li, X. L., & Gai, J. P. (2010). Geographical and plant genotype wweffects on the formation of arbuscular mycorrhiza in Avena sativa and Avena nuda at different soil depths. Biology and Fertility of Soils, 46, 435–443.

    Article  Google Scholar 

  • Walkley, A., & Black, A. I. (1934). An examination of the Degtjareff method for determining soil organic matter, and proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.

    Article  CAS  Google Scholar 

  • Walker, C., & Trappe, J. M. (1993). Names and epithets in the Glomales and Endogonales. Mycological Research, 97, 339–344.

    Article  Google Scholar 

  • Whipps, J. M. (2004). Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Canadian Journal of Botany, 82, 1189–1227.

    Article  Google Scholar 

Download references

Acknowlegements

This study was supported by Scientific Research Projects of Bartın University numbered with BAP.2013.1.92.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şahin Palta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palta, Ş., Lermi, A.G. & Beki, R. The effect of different land uses on arbuscular mycorrhizal fungi in the northwestern Black Sea Region. Environ Monit Assess 188, 350 (2016). https://doi.org/10.1007/s10661-016-5350-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5350-z

Keywords

Navigation