Skip to main content

Advertisement

Log in

Changes of soil carbon dioxide, methane, and nitrous oxide fluxes in relation to land use/cover management

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Conversions of land use/cover are associated with changes in soil properties and biogeochemical cycling, with implications for carbon (C), nitrogen (N), and trace gas fluxes. In an attempt to provide a comprehensive evaluation of the significance of different land uses (Alnus subcordata plantation, Taxodium distichum plantation, agriculture, and deforested areas) on soil features and on the dynamics of greenhouse gas (GHG) fluxes at local scale, this study was carried out in Mazandaran province, northern Iran. Sixteen samples per land use, from the top 10 cm of soil, were taken, from which bulk density, texture, water content, pH, organic C, total N, microbial biomass of C and N, and earthworm density/biomass were determined. In addition, the seasonal changes in the fluxes of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were monitored over a year. Our results indicated that the different land uses were different in terms of soil properties and GHG fluxes. Even though the amount of the GHG varied widely during the year, the highest CO2 and CH4 fluxes (0.32 mg CO2 m−2 day−1 and 0.11 mg CH4 m−2 day−1, respectively) were recorded in the deforested areas. N2O flux was higher in Alnus plantation (0.18 mg N2O m−2 day−1) and deforested areas (0.17 mg N2O m−2 day−1) than at agriculture site (0.05 mg N2O m−2 day−1) and Taxodium plantation (0.03 mg N2O m−2 day−1). This study demonstrated strong impacts of land use change on soil-atmosphere trace gas exchanges and provides useful observational constraints for top-down and bottom-up biogeochemistry models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen, K., Corre, M. D., Tjoa, A., & Veldkamp, E. (2015). Soil nitrogen-cycling responses to conversion of lowland forests to oil palm and rubber plantations in Sumatra, Indonesia. PloS one, 10, e0133325.

    Article  Google Scholar 

  • Allison, L. E. (1975). Organic carbon. In C. A. Black (Ed.), Methods of soil analysis (pp. 1367–1378). Madison, W. I: American Society of Agronomy, Part 2.

    Google Scholar 

  • Augusto, L., Ranger, J., Binkley, D., & Rothe, A. (2002). Impact of several common tree species of European temperate forests on soil fertility. Annals of Forest Science, 59, 233–253.

    Article  Google Scholar 

  • Augusto, L., Dupouey, J. L., & Ranger, J. (2003). Effects of tree species on understory vegetation and environmental conditions in temperate forests. Annals of Forest Science, 60, 823–831.

    Article  Google Scholar 

  • Bahrami, A., Emadodin, I., Ranjbar Atashi, M., & Rudolf Bork, H. (2010). Land-use change and soil degradation: a case study, North of Iran. Agriculture and Biology Journal of North America, 1, 600–605.

    Google Scholar 

  • Bellingrath-Kimura, S. D., Kishimoto-Mo, A. W., Oura, N., Sekikawa, S., Yonemura, S., Sudo, S., Hayakawa, A., Minamikawa, K., Takata, Y., & Hara, H. (2015). Differences in the spatial variability among CO2, CH4, and N2O gas fluxes from an urban forest soil in Japan. Ambio, 44, 55–66.

    Article  CAS  Google Scholar 

  • Bender, S. F., Plantenga, F., Neftel, A., Jocher, M., Oberholzer, H. R., Köhl, L., Giles, M., Daniell, T. J., & Van der Heijden, M. G. (2014). Symbiotic relationships between soil fungi and plants reduce N2O emissions from soil. The ISME journal, 8, 1336–1345.

    Article  CAS  Google Scholar 

  • Bousquet, P., Ciais, P., Miller, J. B., Dlugokencky, E. J., Hauglustaine, D. A., Prigent, C., Van der Werf, G. R., Peylin, P., Brunke, E. G., Carouge, C., Langenfelds, R. L., Lathière, J., Papa, F., Ramonet, M., Schmidt, M., Steele, L. P., Tyler, S. C., & White, J. (2006). Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature, 443, 439–443.

    Article  CAS  Google Scholar 

  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analysis of soils. Agronomy Journal, 56, 464–465.

    Article  Google Scholar 

  • Bowden, R. D., Newkirk, K. M., & Rullo, G. M. (1998). Carbon dioxide and methane fluxes by a forest soil under laboratory-controlled moisture and temperature conditions. Soil Biology and Biochemistry, 30, 1591–1597.

    Article  CAS  Google Scholar 

  • Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen—total. In A. L. Page, R. H. Miller, & R. R. Keeney (Eds.), Methods of soil analysis second (pp. 595–624). Madison, W.I: American Society of Agronomy, Part 2.

    Google Scholar 

  • Brookes, P. C., Landman, A., Pruden, G., & Jenkinson, D. S. (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17, 837–842.

    Article  CAS  Google Scholar 

  • Chase, P., & Singh, O. P. (2014). Soil nutrients and fertility in three traditional land use systems of Khonoma. Resources and Environment, 4, 181–189.

    Google Scholar 

  • Chaudhuri, P. S., Bhattacharjee, S. D. A., Chattopadhyay, S., & Bhattacharya, D. (2013). Impact of age of rubber (Hevea brasiliensis) plantation on earthworm communities of West Tripura India. Journal Environ mental Biology, 34, 59–65.

    CAS  Google Scholar 

  • Chodak, M., & Niklinska, M. (2010). Effect of different tree species on the chemical and microbial properties of reclaimed mine soils. Biology and fertility of soils, 46, 555–566.

    Article  CAS  Google Scholar 

  • Dijkstra, F. A., Prior, S. A., Runion, G. B., Torbert, H. A., Tian, H., Lu, C., & Venterea, R. T. (2012). Effects of elevated carbon dioxide and increased temperature on methane and nitrous oxide fluxes: evidence from field experiments. Frontiers in Ecology and the Environment, 10, 520–527.

    Article  Google Scholar 

  • Dyer, L., Oelbermann, M., & Echarte, L. (2012). Soil carbon dioxide and nitrous oxide emissions during the growing season from temperate maize‐soybean intercrops. Journal of Plant Nutrition and Soil Science, 175, 394–400.

    Article  CAS  Google Scholar 

  • Grover, S. P. P., Livesley, S. J., Hutley, L. B., Jamali, H., Fest, B., Beringer, J., Butterbach-Bahl, K., & Arndt, S. K. (2012). Land use change and the impact on greenhouse gas exchange in north Australian savanna soils. Biogeosciences, 9, 423–437.

    Article  CAS  Google Scholar 

  • Haghdoost, N., Akbarinia, M., Hosseini, S. M., & Kooch, Y. (2011). Conversion of Hyrcanian degraded forests to plantations: effects on soil C and N stocks. Annals of Biological Research, 50, 385–399.

    Google Scholar 

  • Harter, J., Krause, H. M., Schuettler, S., Ruser, R., Fromme, M., Scholten, T., Kappler, A., & Behrens, S. (2014). Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. The ISME journal, 8, 660–674.

    Article  CAS  Google Scholar 

  • Hénault, C., Grossel, A., Mary, B., Roussel, M., & Leonard, J. (2012). Nitrous oxide emission by agricultural soils: a review of spatial and temporal variability for mitigation. Pedosphere, 22, 426–433.

    Article  Google Scholar 

  • Humpenoder, F., Popp, A., Dietrich, J. P., Klein, D., Lotze-Campen, H., Bonsch, M., Bodirsky, B. L., Weindl, I., Stevanovic, M., & Muller, C. (2014). Investigating afforestation and bioenergy CCS as climate change mitigation strategies. Environmental Research Letters, 9, 064029.

    Article  Google Scholar 

  • Inagaki, Y., Miura, S., & Kohzo, A. (2004). Effects of forest type and stand age on litter fall quality and soil N dynamics in Shikoku, Southern Japan. Forest Ecology and Management, 202, 107–117.

    Article  Google Scholar 

  • Inubushi, K., Furukawa, Y., Hadi, A., Purnomo, E., & Tsuruta, H. (2003). Seasonal changes of CO2, CH4 and N2O fluxes in relation to land-use change in tropical peatlands located in coastal area of South Kalimantan. Chemosphere, 52, 603–608.

    Article  CAS  Google Scholar 

  • Iqbal, J., Hu, R., Feng, M., Lin, S., Malghani, S., & Ali, I. M. (2010). Microbial biomass, and dissolved organic carbon and nitrogen strongly affect soil respiration in different land uses: a case study at Three Gorges Reservoir Area, South China. Agriculture, Ecosystems & Environment, 137, 294–307.

    Article  CAS  Google Scholar 

  • Islam, K. R., & Weil, R. R. (2000). Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Agriculture, Ecosystems & Environment, 79, 9–16.

    Article  Google Scholar 

  • Kooch, Y., & Zoghi, Z. (2014). Comparison of soil fertility of Acer insigne, Quercus castaneifolia, and Pinus brutia stands in the Hyrcanian forests of Iran. Chinese Journal of Applied Environmental Biology, 20, 899–905.

    CAS  Google Scholar 

  • Kooch, Y., Hosseini, S. M., Zaccone, C., Jalilvand, H., & Hojjati, S. M. (2012). Soil organic carbon sequestration as affected by afforestation: the Darab Kola forest (North of Iran) case study. Journal of Environmental Monitoring, 14, 2438–2446.

    Article  CAS  Google Scholar 

  • Kooch, Y., Zaccone, C., Lamersdorf, N. P., & Tonon, G. (2014). Pit and mound influence on soil features in an Oriental Beech (Fagus orientalis Lipsky) forest. European Journal of Forest Research, 133, 347–354.

    Article  Google Scholar 

  • Lal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123, 1–22.

    Article  CAS  Google Scholar 

  • Langenbruch, C., Helfrich, M., & Flessa, H. (2012). Effects of beech (Fagus sylvatica), ash (Fraxinus excelsior) and lime (Tilia spec.) on soil chemical properties in a mixed deciduous forest. Plant and Soil, 352, 389–403.

    Article  CAS  Google Scholar 

  • Lauber, C. L., Strickland, M. S., Bradford, M. A., & Fierer, N. (2008). The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry, 40, 2407–2415.

    Article  CAS  Google Scholar 

  • Lavoie, M., Kellman, L., & Risk, D. (2013). The effects of clear-cutting on soil CO2, CH4, and N2O flux, storage and concentration in two Atlantic temperate forests in Nova Scotia, Canada. Forest Ecology and Management, 304, 355–369.

    Article  Google Scholar 

  • Livesley, S. J., Idczak, D., & Fest, B. J. (2013). Differences in carbon density and soil CH4/N2O flux among remnant and agro-ecosystems established since European settlement in the Mornington Peninsula, Australia. Science of the Total Environment, 465, 17–25.

    Article  CAS  Google Scholar 

  • Mao, R., Zeng, D. H., Yan, A. G., Yang, D., Li, L., & Liu, Y. X. (2010). Soil microbiological and chemical effects of a nitrogen-fixing shrub in poplar plantations in semi-arid region of Northeast China. European Journal of Soil Biology, 46, 325–329.

    Article  Google Scholar 

  • Pabst, H., Kühnel, A., & Kuzyakov, Y. (2013). Effect of land-use and elevation on microbial biomass and water extractable carbon in soils of Mt. Kilimanjaro ecosystems. Applied Soil Ecology, 67, 10–19.

    Article  Google Scholar 

  • Pendall, E., Schwendenmann, L., Rahn, T., Miller, J. B., Tans, P. P., & White, J. W. C. (2010). Land use and season affect fluxes of CO2, CH4, CO, N2O, H2 and isotopic source signatures in Panama: evidence from nocturnal boundary layer profiles. Global Change Biology, 16, 2721–2736.

    Article  Google Scholar 

  • Plaster, E. J. (1985). Soil science and management (p. 124). Albany, N.Y.: Delmar Publishers Inc.

    Google Scholar 

  • Rochette, P., & Angers, D. A. (2000). Soil carbon and nitrogen dynamics following application of pig slurry for the 19th consecutive year I. Carbon dioxide fluxes and microbial biomass carbon. Soil Science Society of America Journal, 64, 1389–1395.

    Article  CAS  Google Scholar 

  • Rothe, A., Cromack, J. K., Resh, S. C., Makeneci, E., & Son, Y. (2002). Soil carbon and nitrogen changes under Douglas-fir with and without red alder. Soil Science Society of America Journal, 66, 1988–1995.

    Article  CAS  Google Scholar 

  • Scheer, C., Grace, P. R., Rowlings, D. W., Kimber, S., & Van Zwieten, L. (2011). Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia. Plant and Soil, 345, 47–58.

    Article  CAS  Google Scholar 

  • Schulp, C. J. E., Nabulars, G. J., Verburg, P. H., & Waal, R. W. (2008). Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. Forest Ecology and Management, 256, 482–490.

    Article  Google Scholar 

  • Sigurdsson, B. D., & Gudleifsson, B. E. (2013). Impact of afforestation on earthworm populations in Iceland. Icelandic Agriculture Sciences, 26, 21–36.

    Google Scholar 

  • Singh, K., Singh, B., & Singh, R. R. (2012). Changes in physico-chemical, microbial and enzymatic activities during restoration of degraded sodic land: ecological suitability of mixed forest over monoculture plantation. Catena, 96, 57–67.

    Article  CAS  Google Scholar 

  • Smith, K. A., & Conen, F. (2004). Impacts of land management on fluxes of trace greenhouse gases. Soil Use and Management, 20, 255–263.

    Article  Google Scholar 

  • Smith, R. G., Mcswine, C. P., Grandy, A. S., Suwanawaree, P., Snider, R. M., & Robertson, G. P. (2008). Diversity and abundance of earthworms across agricultural land-use intensity gradient. Soil and Tillage Research, 100, 83–88.

    Article  Google Scholar 

  • Soleimany Rahimabady, M. (2014). Effect of native and non-native plantations on herbaceous species life form, stability of soil aggregate and particulate organic matter (case study: Forest Seed Center of Khazar). M. Sc. thesis (p. 123). Iran: Tarbiat Modares University.

    Google Scholar 

  • Sparling, G. P., Feltman, C. W., Reynolds, J., West, A. W., & Singleton, P. (1990). Estimation of soil microbial C by fumigation–extraction method: use on soils of high organic matter content, and reassessment of the kEC factor. Soil Biology and Biochemistry, 22, 301–307.

    Article  Google Scholar 

  • Talebi, K. S., Sajedi, T., & Pourhashemi, M. (2014). Forests of Iran: a treasure from the past, a hope for the future. Berlin: Springer.

    Book  Google Scholar 

  • Von Arnold, K., Nilsson, M., Hånell, B., Weslien, P., & Klemedtsson, L. (2005a). Fluxes of CO2, CH4 and N2O from drained organic soils in deciduous forests. Soil Biology and Biochemistry, 37, 1059–1071.

  • Von Arnold, K., Weslien, P., Nilsson, M., Svensson, B. H., & Klemedtsson, L. (2005b). Fluxes of CO2, CH4 and N2 O from drained coniferous forests on organic soils. Forest Ecology and Management, 210(239), 254.

  • Xu, X., Tian, H., & Hui, D. (2008). Convergence in the relationship of CO2 and N2O exchanges between soil and atmosphere within terrestrial ecosystems. Global Change Biology, 14, 1651–1660.

    Article  Google Scholar 

  • Yao, Z., Wolf, B., Chen, W., Butterbach-Bahl, K., Brüggemann, N., Wiesmeie, M., Dannenmann, M., Blank, B., & Zheng, X. (2010). Spatial variability of N2O, CH4 and CO2 fluxes within the Xilin River catchment of Inner Mongolia, China: a soil core study. Plant and Soil, 331, 341–359.

    Article  CAS  Google Scholar 

  • Zhang, K., Zheng, H., Chen, F. L., Ouyang, Z. Y., Wang, Y., Wu, Y. F., Lan, J., Fu, M., & Xiang, X. W. (2015). Changes in soil quality after converting Pinus to Eucalyptus plantations in southern China. Solid Earth, 6, 115–123.

    Article  Google Scholar 

  • Zhao, Y., Wang, Y. Z., Xu, Z. H., & Fu, L. (2015). Impacts of prescribed burning on soil greenhouse gas fluxes in a suburban native forest of south-eastern Queensland, Australia. Biogeosciences, 12, 6279–6290.

    Article  Google Scholar 

Download references

Acknowledgments

Many thanks are due to Mr. Ehsan Rajayee and Mr. Ali Khodadust for their tireless assistance with field sampling. This research was done by financial supports of Tarbiat Modares University, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahya Kooch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kooch, Y., Moghimian, N., Bayranvand, M. et al. Changes of soil carbon dioxide, methane, and nitrous oxide fluxes in relation to land use/cover management. Environ Monit Assess 188, 346 (2016). https://doi.org/10.1007/s10661-016-5342-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5342-z

Keywords

Navigation