Skip to main content
Log in

UV spectrophotometry for monitoring the performance of a yeast-based deoxygenation process to treat ships’ ballast water

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study assessed the usefulness of UV spectrophotometry for the monitoring of a yeast-based deoxygenation process proposed for ships’ ballast water treatment to prevent the transfer of aquatic invasive species. Ten-day laboratory experiments using three treatment concentrations and different water types were conducted and resulted in complete oxygen depletion of treated waters. The treatment performance and quality of treated waters were determined by measuring the UV-visible absorbance spectra of water samples taken over time. Samples were also used for laboratory analysis of water quality properties. The UV absorbance spectra values were strongly correlated (r = 0.96) to yeast cell density in treated waters. The second-order derivative (D 2) of the spectra varied greatly over time, and the spectrum profiles could be divided into two groups corresponding to the oxygenated and anoxic phases of the treatment. The D 2 value at 215 nm was strongly correlated (r = 0.94) to ammonia levels, which increased over time. The D 2 value at 225 nm was strongly correlated (r > 0.97) to DO concentration. Our results showed that UV spectrophotometry may provide a rapid assessment of the behavior and performance of the yeast bioreactor over time by quantifying (1) the density of yeast cells, (2) the time at which anoxic conditions were reached, and (3) a water quality index of the treated water related to the production of ammonia. We conclude that the rapidity of the technique confers a solid advantage over standard methods used for water quality analysis in laboratory and would permit the direct monitoring of the treatment performance on-board ships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alupoaei, C. E., & García-Rubio, L. H. (2004). Growth behavior of microorganisms using UV–vis spectroscopy: Escherichia coli. Biotechnology and Bioengineering, 86, 163–167.

    Article  CAS  Google Scholar 

  • American Public Health Association (APHA), American Water Works Association (AWWA), & Water Environment Federation (WEF). (2005). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association.

    Google Scholar 

  • Arar, E. J., & Collins, G. B. (1997). In vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence. National Exposure Research Laboratory, Office of Research and Development. U.S. Environmental Protection Agency. http://www.epa.gov/microbes/documents/m445_0.pdf. Accessed 30 January 2015.

  • Brito, R. S., Pinheiro, H. M., Ferreira, F., Matos, J. S., & Lourenco, N. D. (2014). In-situ UV–vis spectroscopy to estimate COD and TSS in wastewater drainage systems. Urban Water Journal, 11(4), 261–273.

    Article  CAS  Google Scholar 

  • Cohen, A. N. (1998). Ships’ ballast water and the introduction of exotic organisms into the San Francisco Estuary. Current status of the problem and option for management. Richmond, CA: San Francisco Estuary Institute.

    Google Scholar 

  • Crumpton, W. G., Isenhart, T. M., & Mitchell, P. D. (1992). Nitrate and organic N analyses with second-derivative spectroscopy. Limnology and Oceanography, 37, 907–913.

    Article  CAS  Google Scholar 

  • de Lafontaine, Y., Chambers, Y., Despatie, S.-P., Gagnon, C., & Blaise, C. (2013). Effectiveness and potential environmental impact of a yeast-based deoxygenation process for treating ships’ ballast waters. Water Quality Research Journal of Canada, 48(1), 55–75.

    Article  Google Scholar 

  • de Lafontaine, Y., & Despatie, S.-P. (2014). Performance of a biological deoxygenation process for ships’ ballast water treatment under very cold water conditions. The Science of the Total Environment, 472, 1036–1043.

    Article  Google Scholar 

  • Deflandre, B., & Gagné, J.-P. (2001). Estimation of dissolved organic carbon (DOC) concentrations in nanoliter samples using UV spectroscopy. Water Research, 35(13), 3057–3062.

    Article  CAS  Google Scholar 

  • Drake, J. M., Lodge, D. M., & Lewis, M. A. (2005). Theory and preliminary analysis of species invasions from ballast water: controlling discharge volume and location. American Midland Naturalist, 154(2), 459–470.

    Article  Google Scholar 

  • Dunstan, P. K., & Bax, N. J. (2008). Management of an invasive marine species: defining and testing the effectiveness of ballast-mediated management options using management strategy evaluation. ICES Journal of Marine Science, 65, 841–850.

    Article  Google Scholar 

  • Eckford, R. E., & Fedorak, P. M. (2002). Second derivative UV absorbance analysis to monitor nitrate-reduction by bacteria in most probable number determinations. Journal of Microbiology Methods, 50, 141–153.

    Article  CAS  Google Scholar 

  • Ferree, M. A., & Shannon, R. D. (2001). Evaluation of a second derivative UV/visible spectroscopy technique for nitrate and total nitrogen analysis of wastewater samples. Water Research, 35(1), 327–332.

    Article  CAS  Google Scholar 

  • Gallot, A., & Thomas, O. (1993). Fast and easy interpretation of a set of absorption spectra: theory and qualitative applications for UV examination of waters and wastewaters. Fresenius’ Journal of Analytical Chemistry, 346(10–11), 976–983.

    Article  CAS  Google Scholar 

  • Gollasch, S. (2006). Overview on introduced aquatic species in European navigational and adjacent waters. Helgoland Marine Research, 60(2), 84–89.

    Article  Google Scholar 

  • Gollasch, S., David, M., Voigt, M., Dragsund, E., Hewitt, C., & Fukuyo, Y. (2007). Critical review of the IMO international convention on the management of ships’ballast water and sediments. Harmful Algae, 6(4), 585–600.

    Article  Google Scholar 

  • Gonçalves, A. A., & Gagnon, G. A. (2012). Recent technologies for ballast water treatment. Ozone: Science & Engineering, 34(3), 174–195.

    Article  Google Scholar 

  • Granade, T. C., Hehmann, M. F., & Artis, W. M. (1985). Monitoring of filamentous fungal growth by in situ microspectrophotometry, fragmented mycelium absorbance density, and 14C incorporation: alternatives to mycelial dry weight. Applied Environmental Microbiology, 49(1), 101–108.

    CAS  Google Scholar 

  • Gregg, M. D., & Hallegraeff, G. M. (2007). Efficacy of three commercially available ballast water biocides against vegetative microalgae, dinoflagellate cysts and bacteria. Harmful Algae, 6(4), 567–584.

    Article  CAS  Google Scholar 

  • Hudon, C. (2000). Phytoplankton assemblages in the St. Lawrence River, downstream of its confluence with the Ottawa River, Quebec. Canada. Canadian Journal of Fisheries and Aquatic Sciences, 57(S1), 16–30.

    Article  CAS  Google Scholar 

  • Hudon, C., & Sylvestre, A. (1998). Qualité de l’eau en aval de l’archipel de Montréal, 1994–1996. Rapport ST-170. Environnement Canada – Région du Québec, Conservation de l’environnement, Centre Saint-Laurent

  • Inagaki, T., Hamm, R. N., Arakawa, E. T., & Painter, L. R. (1974). Optical and dielectric properties of DNA in the extreme ultraviolet. The Journal of Chemical Physics, 61(10), 4246–4250.

    Article  CAS  Google Scholar 

  • International Maritime Organization (IMO). (2004). International Convention for the Control and Management of Ships’ Ballast Water and Sediments (BWM). http://www.imo.org/About/Conventions/ListOfConventions/Pages/International-Convention-for-the-Control-and-Management-of-Ships%27-Ballast-Water-and-Sediments-%28BWM%29.aspx. Accessed 30 January 2015.

  • Karlsson, M., Karlberg, B., & Olsson, R. J. O. (1995). Determination of nitrate in municipal waste water by UV spectroscopy. Analytica Chimica Acta, 312(1), 107–113.

    Article  CAS  Google Scholar 

  • Lodge, D. M., Williams, S., MacIsaac, H. J., Hayes, K. R., Leung, B., Reichard, S., Mack, R. N., Moyle, P. B., Smith, M., Androw, D. A., Carlton, J. T., & McMichael, A. (2006). Biological invasions: recommendations for U.S. policy and management. Ecological Applications, 16(6), 2035–2054.

    Article  Google Scholar 

  • MacIsaac, H. J., Robbins, T. C., & Lewis, M. A. (2002). Modeling ships’ ballast water as invasion threats to the Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 59(7), 1245–1256.

    Article  Google Scholar 

  • McCollin, T., Quilez-Badia, G., Josefsen, K. D., Gill, M. E., Mesbahi, E., & Frid, C. L. J. (2007). Ship board testing of a deoxygenation ballast water treatment. Marine Pollution Bulletin, 54, 1170–1178.

    Article  CAS  Google Scholar 

  • Ministère du Développement durable, de l’Environnement, de la Faune et des Parcs du Québec (MDDEFP). (2013). Critères de qualité de l’eau de surface. http://www.mddelcc.gouv.qc.ca/eau/criteres_eau/criteres.pdf. Accessed 30 January 2015.

  • Mitchell, A. L., & Knouft, J. H. (2009). Non-native fishes and native species diversity in freshwater fish assemblages across the United States. Biological Invasions, 11(6), 1441–1450.

    Article  Google Scholar 

  • Mountfort, D. O., Hay, C., Dodgshun, T., Buchanan, S., & Gibbs, W. (1999). Oxygen deprivation as a treatment for ships’ ballast water–laboratory studies and evaluation. Journal of Marine Environmental Engineering, 5, 175–192.

    Google Scholar 

  • Pejchar, L., & Mooney, H. A. (2009). Invasive species, ecosystem services and human well-being. Trends in Ecology & Evolution, 24(9), 497–504.

    Article  Google Scholar 

  • Pouët, M.-F., Baurès, E., Vaillant, S., & Thomas, O. (2004). Hidden isosbestic point(s) in UV spectra. Applied Spectroscopy, 58(4), 486–490.

    Article  Google Scholar 

  • Promega. (2009). ENLITEN® ATP assay system bioluminescence detection kit for ATP measurement. Technical bulletin. Promega Corporation. https://www.promega.com/~/media/files/resources/protocols/technical%20bulletins/0/enliten%20atp%20assay%20system%20bioluminescence%20detection%20kit%20for%20atp%20protocl.pdf. Accessed 30 January 2015

  • Ricciardi, A. (2007). Are modern biological invasions an unprecedented form of global change? Conservation Biology, 21(2), 329–336.

    Article  Google Scholar 

  • Rice, E. W., Bridgewater, L., American Public Health Association (APHA), & American Water Works Association (AWWA). (2012). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association.

    Google Scholar 

  • Rigby, G., & Taylor, A. H. (2001). Ballast water management and treatment options. International Journal of Maritime Technology, 113(3), 79–99.

    Google Scholar 

  • Roberts, G. D., Horstmeier, C. D., Land, G. A., & Foxworth, J. H. (1978). Rapid urea broth test for yeasts. Journal of Clinical Microbiology, 7(6), 584–588.

    CAS  Google Scholar 

  • Roig, B., Pouly, F., Gonzalez, C., & Thomas, O. (2001). Alternative method for the measurement of ammonium nitrogen in wastewater. Analytica Chimica Acta, 437(1), 145–149.

    Article  CAS  Google Scholar 

  • Rojas, F. S., & Ojeda, C. B. (2009). Recent development in derivative ultraviolet/visible absorption spectrophotometry: 2004–2008: A review. Analytica Chimica Acta, 635(1), 22–44.

    Article  Google Scholar 

  • Rothlisberger, J. D., Finnoff, D. C., Cooke, R. M., & Lodge, D. M. (2012). Ship-borne nonindigenous species diminish Great Lakes ecosystem services. Ecosystems, 15(3), 1–15.

    Article  Google Scholar 

  • Ruiz, G. M., Carlton, J. T., Grosholz, E. D., & Hines, A. H. (1997). Global invasions of marine and estuarine habitats by non-indigenous species: mechanisms, extent, and consequences. Integrative and Comparative Biology, 37(6), 621–632.

    Google Scholar 

  • Sarraguça, M. C., Paulo, A., Alves, M. M., Dias, A. M. A., Lopes, J. A., & Ferreira, E. C. (2009). Quantitative monitoring of an activated sludge reactor using on-line UV-visible and near-infrared spectroscopy. Analytical and Bioanalytical Chemistry, 395(4), 1159–1166.

    Article  Google Scholar 

  • Smart, K. A., Chambers, K. M., Lambert, I., Jenkins, C., & Smart, C. A. (1999). Use of methylene violet staining procedures to determine yeast viability and vitality. Journal of the American Society of Brewing Chemists, 57(1), 18–23.

    CAS  Google Scholar 

  • Tamburri, M. N., Little, B. J., Ruiz, G. M., Lee, J. S., & McNulty, P. D. (2004). Evaluations of Venturi Oxygen Stripping TM as a ballast water treatment to prevent aquatic invasions and ship corrosion. Matheickal, JT and S. Raaymakers (eds.).

  • Tamburri, M. N., & Ruiz, G. M. (2005). Evaluations of a ballast water treatment to stop invasive species and tank corrosion. The Society of Naval, Architects and Marine Engineers (SNAME)

  • Tamburri, M. N., Wasson, K., & Matsuda, M. (2002). Ballast deoxygenation can prevent aquatic introductions while reducing ship corrosion. Biological Conservation, 103(3), 331–341.

    Article  Google Scholar 

  • Thomas, O., Baurès, E., & Pouët, M. F. (2005). UV spectrophotometry as a non-parametric measurement of water and wastewater quality variability. Water Quality Research Journal of Canada, 40(1), 51–58.

    CAS  Google Scholar 

  • Thomas, O., & Burgess, C. (2007). UV-Visible spectrophotometry for water and wastewater. Techniques and Instrumentation in Analytical Chemistry, Volume 27

  • Thomas, O., El-Khorassani, H., Touraud, E., & Bitar, H. (1999). TOC versus UV spectrophotometry for wastewater quality monitoring. Talanta, 50(4), 743–749.

    Article  CAS  Google Scholar 

  • Thomas, O., Gallot, S., & Mazas, N. (1990). Ultraviolet multiwavelength absorptiometry (UVMA) for the examination of natural waters and wastewaters. Fresenius’ Journal of Analytical Chemistry, 338(3), 238–240.

    Article  CAS  Google Scholar 

  • Thomas, O., Théraulaz, F., Agnel, C., & Suryani, S. (1996). Advanced UV examination of wastewater. Environmental Technologies, 17(3), 251–261.

    CAS  Google Scholar 

  • Tsolaki, E., & Diamadopoulos, E. (2010). Technologies for ballast water treatment: a review. Journal of Chemical Technology and Biotechnology, 85(1), 19–32.

    Article  CAS  Google Scholar 

  • Vaillant, S., Pouët, M. F., & Thomas, O. (1999). Methodology for the characterization of heterogeneous fractions in wastewater. Talanta, 50(4), 729–736.

    Article  CAS  Google Scholar 

  • Vaillant, S., Pouët, M. F., & Thomas, O. (2002). Basic handling of UV spectra for urban water quality monitoring. Urban Water, 4(3), 273–281.

    Article  CAS  Google Scholar 

  • Vilá, M., Basnou, C., Pysek, P., Josefsson, M., Genovesi, P., Gollasch, S., Nentwig, W., Olenin, S., Roques, A., Roy, D., & Hulme, P. E. (2009). How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Frontiers in Ecology and the Environment, 8(3), 135–144.

    Article  Google Scholar 

  • Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., & Mopper, K. (2003). Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental, Science and Technology, 37(20), 4702–4708.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the St. Lawrence Center of Environment Canada, the Centre universitaire de formation en environnement of the University of Sherbrooke and Transport Canada. We thank Michel DeBlois from MD Technologies for the supply of yeast solutions. The authors are grateful to Simon-Pierre Despatie, Georges Grigorov, Sonia St-Pierre, Richard Calvé, Benoît Fortin, Michel Arseneau, Sylvie Roberge, Yan Chambers, and Germain Brault from Environment Canada for their help during the laboratory experiments and to Pierre Gagnon for his advice on the statistical treatment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves de Lafontaine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veilleux, É., de Lafontaine, Y. & Thomas, O. UV spectrophotometry for monitoring the performance of a yeast-based deoxygenation process to treat ships’ ballast water. Environ Monit Assess 188, 207 (2016). https://doi.org/10.1007/s10661-016-5209-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5209-3

Keywords

Navigation