Skip to main content
Log in

Environmental flow in the River Ondas basin in Bahia, Brazilian Cerrado

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This paper aimed to estimate the environmental flow of a water basin located in the Brazilian Cerrado using the bidimensional model River2D. The study was carried out in a stretch of the lower portion of the River Ondas in the western part of the state of Bahia, Brazil. To carry out the ecohydrological modeling, the following were used: topobathymetry, hydraulic characterization, the streamflows with the probability of non-exceedances (Q50, Q60, Q70, Q80, Q90, and Q95), and the Habitat Suitability Index for species of the genus Hypostomus. In the River2D, the weighted usable areas (WUAs) pertaining to the streamflows associated with different non-exceedances were simulated for the later construction of optimization and identification matrices of the streamflows that maximize the habitat area throughout the year. For juvenile Hypostomus, WUA increased as streamflow increased, with higher values associated with Q50. For adult specimens, lower WUA values were observed associated with Q50, while higher values were associated with Q95, which shows a preference for lower streamflows. The environmental flows found for the stretch of the River Ondas varied over the course of the year. The lowest environmental flows were observed in September (30.31 m3 s−1) and October (29.98 m3 s−1), while the highest were observed in February (44.22 m3 s−1) and March (43.16 m3 s−1). The environmental flow regime obtained restricts the water availability in the basin, for the purpose of water capture, which shows the importance of ecohydrological studies in forming a basis for water resource management actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida, W. A., Moreira, M. C., & Silva, D. D. (2014). Applying water vulnerability indexes for river segments. Water Resources Management. doi:10.1007/s11269-014-0745-5.

    Google Scholar 

  • Arthington, A. H., Bunn, S. E., Poff, N. L., & Naiman, R. J. (2006). The challenge of providing environmental flow rules to sustain river ecosystems. Ecological Applications. doi:10.1890/1051-0761(2006)016[1311:TCOPEF]2.0.CO;2.

    Google Scholar 

  • Ban, X., Du, Y., Liu, H. Z., & Ling, F. (2011). Applying instream flow incremental method for the spawning habitat protection of Chinese sturgeon (Acipenser sinensis). River Research and Applications. doi:10.1002/rra.1341.

    Google Scholar 

  • Batlle-Bayer, L., Batjes, N. H., & Bindraban, P. S. (2010). Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: a review. Agriculture, Ecosystems & Environment, doi: 10.1016/j.agee.2010.02.003

  • Bazzoli, N. (2003). Parâmetros reprodutivos dos peixes de interesse comercial na região de Pirapora. In H. P. Godinho & A. L. Godinho (Eds.), Águas, peixes e pescadores do São Francisco das Minas Gerais (pp. 291–306). Belo Horizonte: PUC Minas.

    Google Scholar 

  • Boavida, I., Santos, J. M., Cortes, R. V., Pinheiro, N. A., & Ferreira, M. T. (2011). Assessment of instream structures for habitat improvement for two critically endangered fish species. Aquatic Ecology. doi:10.1007/s10452-010-9340-x.

    Google Scholar 

  • Boavida, I., Santos, J. M., Cortes, R. V., Pinheiro, N. A., & Ferreira, M. T. (2012). Benchmarking river habitat improvement. River Research and Applications. doi:10.1002/rra.1561.

    Google Scholar 

  • Bovee, K. D. (1982). A guide to stream habitat analysis using the instream flow incremental methodology. Instream Flow Information Paper No. 12. Fort Collins: U.S. Fish and Wildlife Service.

    Google Scholar 

  • Bovee, K. D., Waddle, T. J., & Spears, J. M. (2008). Environmental flow and endangered species habitat in the lower Isleta reach of the middle Rio Grande. Fort Collins: U.S. Geological Survey.

    Google Scholar 

  • Casatti, L., Rocha, F. C., & Pereira, D. C. (2005). Habitat use by two species of Hypostomus (Pisces, Loricariidae) in southeastern Brazilian streams. Biota Neotropica. doi:10.1590/S1676-06032005000300012.

    Google Scholar 

  • Chou, W. C., & Chuang, M. D. (2010). Habitat evaluation using suitability index and habitat type diversity: a case study involving a shallow forest stream in central Taiwan. Environmental Monitoring and Assessment. doi:10.1007/s10661-010-1364-0.

    Google Scholar 

  • Dunham, J. B., Young, M., Gresswell, R. E., & Rieman, B. E. (2003). Effects of fire on fish populations: landscape perspectives on persistence of native fishes and nonnative fish invasion. Forest Ecology and Management. doi:10.1016/S0378-1127(03)00061-6.

    Google Scholar 

  • Eletrobrás. (1985). Metodologia para regionalização de vazões. Rio de Janeiro: Eletrobrás.

    Google Scholar 

  • Gard, M. (2009). Comparison of spawning habitat predictions of PHABSIM and River2D models. International Journal of River Basin Management. doi:10.1080/15715124.2009.9635370.

    Google Scholar 

  • Huckstorf, V., Lewin, W. C., & Wolter, C. (2008). Environmental flow methodologies to protect fisheries resources in human-modified large lowland rivers. River Research and Applications. doi:10.1002/rra.1131.

    Google Scholar 

  • Jalón, D. G., & Gortázar, J. (2007). Evaluation of stream habitat enhancement options using fish habitat simulations: case-studies in the river Pas (Spain). Aquatic Ecology. doi:10.1007/s10452-006-9030-x.

    Google Scholar 

  • Jowett, I. G., & Duncan, M. J. (2012). Effectiveness of 1D and 2D hydraulic models for instream habitat analysis in a braided river. Ecological Engineering. doi:10.1016/j.ecoleng.2011.06.036.

    Google Scholar 

  • Klink, C. A., & Machado, R. B. (2005). Conservation of the Brazilian Cerrado. Conservation Biology. doi:10.1111/j.1523-1739.2005.00702.x.

    Google Scholar 

  • Kolden, E., Fox, B. D., Bledsoe, B. P., & Kondratieff, M. C. (2015). Modelling Whitewater Park hydraulics and fish habitat in Colorado. River Research and Applications. doi:10.1002/rra.2931.

    Google Scholar 

  • Lacey, R. W. J., & Millar, R. G. (2004). Reach scale hydraulic assessment of instream salmonid habitat restoration. Journal of the American Water Resources Association. doi:10.1111/j.1752-1688.2004.tb01611.x.

    Google Scholar 

  • Lee, J. H., Kil, J. T., & Jeong, S. (2010). Evaluation of physical fish habitat quality enhancement designs in urban streams using a 2D hydrodynamic model. Ecological Engineering. doi:10.1016/j.ecoleng.2010.05.004.

    Google Scholar 

  • Lytle, D. H., & Poff, N. L. (2004). Adaptation to natural flow regimes. Trends in Ecology and Evolution. doi:10.1016/j.tree.2003.10.002.

    Google Scholar 

  • Moraes, L. A. F. (2009). A visão integrada da ecohidrologia para o manejo sustentável dos ecossistemas aquáticos. Oecologia Brasiliensis. doi:10.4257/oeco.2009.1304.11.

    Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature. doi:10.1038/35002501.

    Google Scholar 

  • Neves, B. V. B., Martinez, C. B., Santos, H. A., & Viana, E. M. F. (2012). Considerações sobre a manutenção das vazões ecológicas nos rios. Hidro & Hydro, 14(54), 26–31.

    Google Scholar 

  • Parasiewicz, P., Castelli, E., Rogers, J. N., & Plunkett, E. (2012). Multiplex modeling of physical habitat for endangered freshwater mussels. Ecological Modelling. doi:10.1016/j.ecolmodel.2011.12.023.

    Google Scholar 

  • Paredes-Arquiola, J., Martinez-Capel, F., Solera, A., & Aguilella, V. (2013). Implementing environmental flows in complex water resources systems—case study: the Duero river basin, Spain. River Research and Applications. doi:10.1002/rra.1617.

    Google Scholar 

  • Pasternack, G. B., Wang, C. L., & Merz, J. E. (2004). Application of a 2D hydrodynamic model to design of reach-scale spawning gravel replenishment on the Mokelumne river. California. River Research and Applications. doi:10.1002/rra.748.

    Google Scholar 

  • Petts, G. E. (2009). Instream flow science for sustainable river management. Journal of the American Water Resources Association (JAWRA). doi:10.1111/j.1752-1688.2009.00360.x.

    Google Scholar 

  • Poff, N. L., & Zimmerman, J. K. H. (2010). Ecological responses to altered flow regimes: a literature review to inform environmental flows science and management. Freshwater Biology. doi:10.1111/j.1365-2427.2009.02272.x.

    Google Scholar 

  • Polo, J. F., & Torres, J. M. H. (2009). El régimen de caudales mínimos en el nuevo ciclo de la planificación hidrológica. Aspectos metodológicos y procesos de concertación social. Ingeniería y Territorio. doi:10.1111/j.1365-2427.2009.02272.x.

    Google Scholar 

  • Richter, B. D., Davis, M. M., Apse, C., & Konrad, C. (2012). A presumptive standard for environmental flow protection. River Research and Applications. doi:10.1002/rra.1511.

    Google Scholar 

  • Sanz, D. B., & Martínez, D. V. (2008). Estimación de caudales ecológicos en dos cuencas de Andalucía: uso conjunto de aguas superficiales y subterráneas. Ecosistemas, 17(1), 24–36.

    Google Scholar 

  • Soares Neto, J. P., & Souza, N. M. (2007). Características fisiográficas da sub-bacia hidrográfica do rio das Ondas ao longo do tempo e suas relações ambientais. Magistra, 19(2), 104–111.

    Google Scholar 

  • Sontek. (2009). Manual do sistema Riversurveyor S5/M9 versão 1.0. San Diego: YSI Incorporated.

    Google Scholar 

  • Stalnaker, C., Lamb, L. B., Henrickson, J., Bovee, K., & Bartholow, J. (1995). The instream flow incremental methodology, a primer for IFIM. Biological Report 29. Washington: U. S. National Biological Service.

    Google Scholar 

  • Steffler, P., & Blackburn, L. (2002). Two-dimensional depth averaged model of river hydrodynamics and fish habitat. Alberta: University of Alberta.

    Google Scholar 

  • Vestena, L. R., Oliveira, E. D., Cunha, M. C., & Thomaz, E. L. (2012). Vazão ecológica e disponibilidade hídrica na bacia das Pedras, Guarapuava-PR. doi:10.4136/ambi-agua.840.

    Google Scholar 

  • Waddle, T. J., & Bovee, K. D. (2010). Environmental flow studies of the Fort Collins Science Center, U.S. Geological Survey-Cherry Creek. Open-File Report. Arizona: U.S. Geological Survey.

    Google Scholar 

  • Wentworth, C. K. (1922). A scale of grade and class terms for clastic sediments. Journal of Geology. doi:10.1086/622910.

    Google Scholar 

  • Zalewski, M. (2002). Ecohydrology—the use of ecological and hydrological processes for sustainable management of water resources. Hydrological Sciences Journal des Sciences Hydrologiques. doi:10.1080/02626660209492986.

    Google Scholar 

  • Zalewski, M. (2015). Ecohydrology and hydrologic engineering: regulation of hydrology–biota interactions for sustainability. J. Hydrol. Eng., 20(1). http://dx.doi.org/10.1061/(ASCE)HE1943-5584.0000999.

Download references

Acknowledgments

The authors would like to thank the Research Support Foundation of the State of Bahia (FAPESB) and the National Council for Scientific and Technological Development (CNPq) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elis Regina Rodrigues de Souza Castro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza Castro, E.R.R., Moreira, M.C. & da Silva, D.D. Environmental flow in the River Ondas basin in Bahia, Brazilian Cerrado. Environ Monit Assess 188, 68 (2016). https://doi.org/10.1007/s10661-015-5063-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-5063-8

Keywords

Navigation