Skip to main content

Advertisement

Log in

Potential impacts of seasonal variation on atrazine and metolachlor persistence in andisol soil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

To estimate the potential effect of seasonal variation on the fate of herbicides in andisol soil, atrazine and metolachlor residues were investigated through the summer and winter seasons during 2013 and 2014 under field condition. The computed half-lives of atrazine and metolachlor in soil changed significantly through the two seasons of the trial. The half-lives were shorter in summer season with 16.0 and 23.5 days for atrazine and metolachlor, respectively. In contrast, the half-lives were longer during the winter season with 32.7 and 51.8 days for atrazine and metolachlor, respectively. The analysis of soil water balance suggested that more pesticide was lost in deeper soil layers through infiltration in summer than in winter. In addition, during the summer season, metolachlor was more likely to leach into deeper soil layer than atrazine possibly due to high water solubility of metolachlor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdelhafid, R., Houot, S., & Barriuso, E. (2000). How increasing availabilities of carbon and nitrogen affect atrazine behavior in soils. Biology and Fertility of Soils, 30, 333–340.

    Article  CAS  Google Scholar 

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: guidelines for computing crop requirements (FAO irrigation and drainage paper No. 56). Rome, Italy: FAO.

    Google Scholar 

  • Andreu, V., & Pico, Y. (2004). Determination of pesticides and their degradation products in soil: critical review and comparison of methods. Trends in Analytical Chemistry, 23(10–11), 772–789.

    Article  CAS  Google Scholar 

  • Assaf, N. A., & Turco, R. F. (1994). Influence of carbon and nitrogen application on the mineralization of atrazine and its metabolites in soil. Pesticide Science, 41, 41–47.

    Article  CAS  Google Scholar 

  • Azevedo, A. S., Kanwar, R. S., & Pereira, L. S. (2000). Atrazine transport in irrigated heavy- and coarse-textured soils, part I: field studies. Journal of Agricultural Engineering Research, 76, 165–174.

    Article  Google Scholar 

  • Bardgett, R. D., & Leemans, D. K. (1995). The short-term effects of cessation of fertilizer applications, liming, and grazing on microbial biomass and activity in a reseeded upland grassland soil. Biology and Fertility of Soils, 19, 148–154.

    Article  Google Scholar 

  • Barriuso, E., & Houot, S. (1996). Rapid mineralization of the striazine ring of atrazine in soils in relation to soil management. Soil Biology and Biochemistry, 28, 1341–1348.

    Article  CAS  Google Scholar 

  • Bedos, C. (2002). Mass transfer of pesticides into the atmosphere by volatilization from soils and plants: overview. Agronomie, 22, 21–23.

    Article  Google Scholar 

  • Blumhorst, M. R., & Weber, J. B. (1994). Chemical versus microbial degradation of cyanazine and atrazine in soils. Pesticide Science, 42, 79–84.

    Article  CAS  Google Scholar 

  • Crosson, P. (1997). Impacts of Climate Change on Agriculture. Climate Issue Brief, Resources for Future, no. 4.

  • Dikshith. (1991). Toxicology of pesticides in animals (pp. 31–38). Boca Raton: CRC Press.

    Google Scholar 

  • Dusek, J., Sanda, M., Loo, B., & Ray, C. (2010). Field leaching of pesticides at five test sites in Hawaii: study description and results. Pest Management Science, 66(6), 596–611.

    CAS  Google Scholar 

  • Ebato, M., & Yonebayashi, K. (2005). Method for estimating competitive adsorption of herbicide on soils. Journal of Pesticide science society of Japan, 30(3), 220–224.

    Article  CAS  Google Scholar 

  • Ebato, M., Yonebayashi, K., & Kosaki, T. (2001). Predicting freundlich adsorption isotherm of atrazine on Japanese soils. Soil Science Nutrient, 47(2), 221–231.

    Article  CAS  Google Scholar 

  • Gevao, B., Semple, K. T., & Jones, K. C. (2000). Bound pesticide residues in soils: a review. Environmental Pollution, 108, 3–14.

    Article  CAS  Google Scholar 

  • Goux, S., Shapir, N., El Fantroussi, S., Lelong, S., Agathos, S. N., & Pussemier, L. (2003). Long-term maintenance of rapid atrazine degradation in soils inoculated with atrazine degraders. Water, Air, and Soil Pollution, 3, 131–142.

    Article  CAS  Google Scholar 

  • Huygens, D., Boeckx, P., Van Cleemput, O., Oyarzún, C., & Godoy, R. (2005). Aggregate and soil organic carbon dynamics in south Chilean Andisols. Biogeosciences, 2, 159–174.

    Article  CAS  Google Scholar 

  • Johnson, A. C., White, C., Lal Bhardwaj, C., & Dixon, A. (2003). The ability of indigenous micro-organisms to degrade isoproturon, atrazine and mecoprop within aerobic UK aquifer systems. Pest Management Science, 59, 1291–1302.

    Article  CAS  Google Scholar 

  • Kalkhof, D. W., Sneck-Fahre, D., Hallberg, G. R., & Libra, R. D. (1997). Degradation of chloracetanilide herbicides: the prevalence of sulfonic and oxanilic acid metabolites in Iowa groundwater and surface waters. Environmental Science and Technology, 32, 11738–11740.

    Google Scholar 

  • Kazemi, H. V., Anderson, S. H., Goyne, K. W., & Gantzer, C. J. (2008). Atrazine and alachlor transport in claypan soils as influenced by differential antecedent soil water content. Journal of Environmental Quality, 37(4), 1599–1607.

    Article  CAS  Google Scholar 

  • Krause, A., Hancock, W. G., Minard, R. D., Freyer, A. J., Honeycutt, R. C., Lebaron, H. M., Paulson, D. L., Liu, S. Y., & Bollag, J. M. (1985). Microbial transformation of the herbicide metolachlor by a soil actinomycete. Journal of Agricultural and Food Chemistry, 33, 584–589.

    Article  CAS  Google Scholar 

  • Krutz, L. J., Shaner, D. L., Weaver, M. A., Webb, R. M. T., Zablotowicz, R. M., Reddy, K. N., Huang, Y., & Thomson, S. J. (2010). Agronomic and environmental implications of enhanced s-triazine degradation. Pest Management Science, 66, 461–481.

    Article  Google Scholar 

  • Malhat, F. (2012). Determination of chlorantraniliprole residues in grape by high-performance liquid chromatography. Food Analytical Methods, 5(6), 1492–1496.

    Article  Google Scholar 

  • Malhat, F., & Hassan, A. (2011). Level and fate of etoxazole in green bean (Phaseolus vulgaris). Bulletin of Environmental Contamination and Toxicology, 87, 190–193.

    Article  CAS  Google Scholar 

  • Mandelbaum, R. T., Allan, D. L., & Wackett, L. P. (1995). Isolation and characterization of a pseudomonas sp. That mineralizes the striazine herbicide atrazine. Applied and Environmental Microbiology, 61, 1451–1457.

    CAS  Google Scholar 

  • Miller, J. L., Wollum, A. G., & Weber, J. B. (1997). Degradation of carbon- 14-atrazine and carbon-14-metolachlor in soil from four depths. Journal of Environmental Quality, 26, 633–638.

    Article  CAS  Google Scholar 

  • Moorman, T. B., Cowan, J. K., Arthur, E. L., & Coats, J. R. (2001). Organic amendments to enhance biodegradation in contaminated soils. Biology and Fertility of Soils, 33, 541–545.

    Article  CAS  Google Scholar 

  • Mueller, T. C., Steckel, L. E., & Radosevich, M. (2010). Effect of soil pH and previous atrazine use history on atrazine degradation in a Tennessee field soil. Weed Science, 58, 478–483.

    Article  CAS  Google Scholar 

  • Ng, H., & Clegg, S. (1997). Atrazine and metolachlor losses in runoff events from an agricultural watershed: the importance of runoff components. Science of the Total Environment, 193(3), 215–228.

    Article  CAS  Google Scholar 

  • Palikhe, B. (2007). Relationship between pesticide use and climate change for crops. Journal of Agricultural and Environmental, 8, 83–91.

    Google Scholar 

  • Perrin-Ganier, C., Schiavon, F., Morel, J. L., & Schiavon, M. (2001). Effect of sludge-amendment or nutrient addition on the biodegradation of the herbicide isoproturon in soil. Chemosphere, 44, 887–892.

    Article  CAS  Google Scholar 

  • Rebich, R. A., Coupe, R. H., & Thurman, E. M. (2004). Herbicide concentrations in the Mississippi river basinsthe importance of chloracetanilide herbicide degradates. Science of the Total Environment, 321, 189–199.

    Article  CAS  Google Scholar 

  • Rosales-Conrado, N., Leon-Gonzalez, M. E., Perez-Arribas, L. V., & Polo-Diez, L. M. (2002). Determination of chlorophenoxy acid herbicide and their esters in soil by capillary high performance liquid chromatography with ultraviolet detection, using large volume injection and temperature gradient. Analitica Chimica Acta, 470, 147–154.

    Article  CAS  Google Scholar 

  • Saxena, A., Zhang, R., & Bollag, J. M. (1987). Microorganisms capable of metabolizing the herbicide metolachlor. Applied and Environmental Microbiology, 53, 390–396.

    CAS  Google Scholar 

  • Shaner, D. L. (2003). Herbicide safety relative to common targets in plants and mammals. Pest Management Science, 60, 17–24.

    Article  Google Scholar 

  • Shaner, D. L., & Henry, W. B. (2007). Field history and dissipation of atrazine and metolachlor in Colorado. Journal of Environmental Quality, 36, 128–134.

    Article  CAS  Google Scholar 

  • Singh, B. K., Walker, A., Morgan, J. A. W., & Wright, D. (2003). Role of soil pH in the development of enhanced biodegradation of fenamiphos. Applied and Environmental Microbiology, 69, 7035–7043.

    Article  CAS  Google Scholar 

  • Smith, C. J. (1990). Hydrogeology with respect to underground contamination. In D. H. Huston & T. R. Roberts (Eds.), Environmental fate of pesticides (pp. 47–99). London: Wiley.

    Google Scholar 

  • Sparks, R. (2003). Environmental soil chemistry. Amsterdam: Elsevier.

    Google Scholar 

  • Steffens, K., Larsbo, M., Moeys, J., Kjellstrom, E., Jarvis, N., & Lewan, E. (2014). Modelling pesticide leaching under climate change: parameter vs. climate input uncertainty. Hydrology and Earth System Sciences, 18, 479–491.

    Article  Google Scholar 

  • The Pesticide Properties Database (PPDB) developed by the Agriculture & Environment Research Unit (AERU), University of Hertfordshire. (2006–2015). available at http://sitem.herts.ac.uk/aeru/iupac/index.htm. Accessed 10 June 2015.

  • Tomlin, C. D. S., Ed. (2000). The Pesticide Manual; British Crop Council: Surrey, U.K., pp 42-43, 635-636, 678-688.

  • U.S. Geological Survey. (1999). The quality of our nation’s waters: nutrients and pesticides, available at http://water.usgs.gov/pubs/circ/circ1225/. Accessed 9 June 2015.

  • Vanderheyden, V., Debongnie, P., & Pussemier, L. (1997). Accelerated degradation and mineralization of atrazine in surface and subsurface soil materials. Pesticide Science, 49, 237–242.

    Article  CAS  Google Scholar 

  • Wakelin, S. A., Macdonald, L. M., Rogers, S. L., Gregg, A. L., Bolger, T. P., & Baldock, J. A. (2008). Habitat selective factors influencing the structural composition and functional capacity of microbial communities in agricultural soils. Soil Biology and Biochemistry, 40, 803–813.

    Article  CAS  Google Scholar 

  • Wauchope, R. D. (1978). The pesticide content of surface water draining from agricultural fields a review. Journal of Environmental Quality, 7, 459–465.

    Article  CAS  Google Scholar 

  • Weed, D. A. J., Kanwar, R. S., Stoltenberg, D. E., & Pfeiffer, R. L. (1995). Dissipation and distribution of herbicides in the soil profile. Journal of Environmental Quality, 24, 68–79.

    Article  CAS  Google Scholar 

  • Yassir, A., Lagacherie, B., Houot, S., & Soulas, G. (1999). Microbial aspects of atrazine biodegradation in relation to history of soil treatment. Pesticide Science, 55, 799–809.

    Article  CAS  Google Scholar 

  • Zablotowicz, R. M., Weaver, M. A., & Locke, M. A. (2006). Microbial adaptation for accelerated atrazine mineralization/degradation in Mississippi Delta soils. Weed Science, 54, 538–547.

    Article  CAS  Google Scholar 

  • Zelles, L., Stepper, K., & Zsolnay, A. (1990). The effect of lime on microbial activity in spruce (Picea abies L.). forests. Biology and Fertility of Soils, 9(1), 78–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The first author was funded by the Mitsubishi International Foundation of Japan under Grant (MITSU1415). F. Malhat (26.04074) and D.Q. Thuyet are supported by Japan Society for the Promotion of Science (JSPS) as postdoctoral research fellow at Tokyo University of Agriculture and Technology and the University of Tokyo, respectively. The authors are grateful to the Food and Agricultural Materials Inspection Center (FAMIC) for their technical advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirozumi Watanabe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaikaew, P., Boulange, J., Thuyet, D.Q. et al. Potential impacts of seasonal variation on atrazine and metolachlor persistence in andisol soil. Environ Monit Assess 187, 760 (2015). https://doi.org/10.1007/s10661-015-4986-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4986-4

Keywords

Navigation