Skip to main content

Advertisement

Log in

Potential human health risk assessment of heavy metals via the consumption of tilapia Oreochromis mossambicus collected from contaminated and uncontaminated ponds

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Fish tilapia Oreochromis mossambicus were collected from a contaminated Seri Serdang (SS) pond potentially receiving domestic effluents and an uncontaminated pond from Universiti Putra Malaysia (UPM). The fish were dissected into four parts namely gills, muscles, intestines, and liver. All the fish parts were pooled and analyzed for the concentrations of Cd, Cu, Fe, Ni, Pb, and Zn. Generally, the concentrations of all metals were low in the edible muscle in comparison to the other parts of the fish. It was found that the levels of all the heavy metals in the different parts of fish collected from the SS were significantly (P < 0.05) higher than those from UPM, indicating greater metal bioavailabilities in the SS pond. The sediment data also showed a similar pattern with significantly (P < 0.05) higher metal concentrations in SS than in UPM, indicating higher metal contamination in SS. Potential health risk assessments based on provisional tolerable weekly intake (PTWI) and the amount of fish required to reach the PTWI values, estimated daily intake (EDI), and target hazard quotient (THQ) indicated that health risks associated with heavy metal exposure via consumption of the fish’s muscles were insignificant to human. Therefore, the consumption of the edible muscles of tilapia from both ponds should pose no toxicological risk of heavy metals since their levels are also below the recommended safety guidelines. While it is advisable to discard the livers, gills, and intestines of the two tilapia fish populations before consumption, there were no potential human health risks of heavy metals to the consumers on the fish muscle part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, M. K., Habibullah-Al-Mamun, M., Parvin, E., Akter, M. S., & Shahneawz Khan, M. (2013). Arsenic induced toxicity and histopathological changes in gill and liver tissue of freshwater fish, tilapia (Oreochromis mossambicus). Experimental and Toxicologic Pathology, 65, 903–909.

    Article  CAS  Google Scholar 

  • Ahmed, K., Habibullah -al- Mamun, M., Monirul Islam, M., Akter, M. S., & Shahneawz Khan, M. (2015a). Toxicological assessment of arsenic-induced hematological alterations and chromosomal aberrations in Tilapia Oreochromis mossambicus. Human and Ecological Risk Assessment: An International Journal, 21(1), 146–156.

    Article  CAS  Google Scholar 

  • Ahmed, K., Shaheen, M., Saiful Islam, N., Habibullah-al-Mamun, M., Saiful Islam, M., Mohiduzzaman, M., & Bhattacharjee, L. (2015b). Dietary intake of trace elements from highly consumed cultured fish (Labeo rohita, Pangasius pangasius and Oreochromis mossambicus) and human health risk implications in Bangladesh. Chemosphere, 128, 284–292.

    Article  CAS  Google Scholar 

  • Barak, N. A. E., & Mason, C. F. (1990). Mercury, cadmium and lead concentrations in five species of freshwater fish from Eastern England. Science of Total Environment, 92, 257–263.

    Article  CAS  Google Scholar 

  • Bat, L., Sahin, F., Üstün, F., & Sezgin, M. (2012). Distribution of Zn, Cu, Pb and Cd in the tissues and organs of Psetta maxima from Sinop Coasts of the Black Sea. Turkish Journal of Marine Science, 2(5), 105–109.

    Google Scholar 

  • Bogdanovic, T., Ujevic, I., Sedak, M., Listes, E., Simat, V., Petricevic, S., & Poljak, V. (2014). As, Cd, Hg and Pb in four edible shellfish species from breeding and harvesting areas along the eastern Adriatic Coast, Croatia. Food Chemistry, 146, 197–203.

    Article  CAS  Google Scholar 

  • Copat, C., Bella, F., Castaing, M., Fallico, R., Sciacca, S., & Ferrante, M. (2012). Heavy metals concentrations in fish from Sicily (Mediterranean Sea) and evaluation of possible health risks to consumers. Bulletin of Environment Contamination and Toxicology, 88(1), 79–83.

    Article  Google Scholar 

  • Dallinger, R., Prosi, F., Segner, H., & Back, H. (1987). Contaminated food and uptake of heavy metals by fish: a review and proposal for further research. Oecologia (Berlin), 73, 91–98.

    Article  Google Scholar 

  • EC (European Commission). (2006). Commission Regulation (EC) No 1881/2006 of the European parliament and the council of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Communities, L364/18. Available online at:http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R1881&from=EN, 2006. (Accessed 12 June 2015).

  • EFSA (European Food Safety Authority). (2010). EFSA panel on contaminants in the food chain (CONTAM); Scientific Opinion on Lead in Food. EFSA J 2010;8(4):1570–719. Available online at:http://www.efsa.europa.eu, 2010. (Accessed 12 June 2015).

  • Eisler, R. (1988). Zinc hazards to fish, wildlife and invertebrates: a synoptic review. Fish Wildlife Service, Biology of Reproduction, US, 85pp.

  • FAO (Food Administration Organization). (1983). Compilation of legal limits for hazardous substances in fish and fishery products. FAO Fisheries Circular. 764. FAO, Rome, pp. 102, <http://www.fao.org/fi/oldsite/eims_search/1_dett.asp?calling=simple_s_result&lang=fr&pub_id=65155>.

  • Forti, E., Salovaara, S., Cetin, Y., Bulgheroni, A., Pfaller, R. W., & Prieto, P. (2011). In vitro evaluation of the toxicity induced by nickel soluble and particulate forms in human airway epithelial cells. Toxicology In Vitro, 25(2), 454–461.

    Article  CAS  Google Scholar 

  • George, R., Martin, G. D., Nair, S. M., & Chandramohanakumar, N. (2012). Biomonitoring of trace metal pollution using fishes from the cochin backwaters. Environmental Forensics, 13(3), 272–283.

    Article  CAS  Google Scholar 

  • Golimowski, J., & Tykarska, A. (1994). Voltammetric methods for the determination of heavy metals in domestic waste and compost produced from it. Fresenius Journal of Analytical Chemistry, 349, 620–624.

    Article  CAS  Google Scholar 

  • Gorell, J. M., Johnson, C. C., Rybicki, B. A., Peterson, E. L., Kortsha, G. X., Brown, G. G., & Richardson, R. J. (1997). Occupational exposures to metals as risk factors for Parkinson’s disease. Neurology, 48, 650–658.

    Article  CAS  Google Scholar 

  • Hadson, P. V. (1988). The effect of metabolism on uptake, disposition and toxicity in fish. Aquatic Toxicology, 11, 3–18.

    Article  Google Scholar 

  • Hang, X. S., Wang, H. Y., Zhou, J. M., Ma, C. L., Du, C. W., & Chen, X. Q. (2009). Risk assessment of potentially toxic element pollution in soils and rice (Oryza sativa) in a typical area of the Yangtze River Delta. Environmental Pollution, 157, 2542–2549.

    Article  CAS  Google Scholar 

  • IARC. (International Agency for Research on Cancer). (2014). World Cancer Report 2014. Available at: http://www.iarc.fr/en/publications/books/wcr/wcr-order.php.

  • Iqbal, J., & Shah, M. H. (2014). Study of seasonal variations and health risk assessment of heavy metals in Cyprinus carpio from Rawal Lake, Pakistan. Environmental Monitoring and Assessment, 186, 2025–2037.

    Article  CAS  Google Scholar 

  • JECFA (Joint FAO/WHO Expert Committee on Food Additives). (2010). Summary and conclusions of the seventy-third meeting of the Joint FAO/WHO Expert Committee on Food Additive. JECFA/73/SC, Geneva, Switzerland, 2010. <http://who.int/foodsafety/publications/chem/summary73.Pdf.

  • JECFA (Joint FAO/WHO Expert Committee on Food Additives). (2011). Evaluation of certain food additives and contaminants. Seventy-third report of the Joint FAO/WHO Expert Committee on Food Additive. WHO Technical Report Series 960. Geneva, Switzerland, 2011. Available online at: http://whqlibdoc.who.int/trs/WHO_TRS_960_eng.pdf, 2011.

  • Jian, L., Zhiyong, Y. H., Yue, H., & Hong, Y. (2013). Potential risk assessment of heavy metals by consuming shellfish collected from Xiamen, China. Environmental Science and Pollution Research, 20, 2937–2947.

    Article  Google Scholar 

  • Jirsa, F., Leodolter-Dvorak, M., Krachler, R., & Frank, C. (2008). Heavy metals in the nase, Chondrostoma nasus (L. 1758), and its intestinal parasite Caryophyllaeus laticeps (Pallas 1781) from Austrian rivers: bioindicative aspects. Archives of Environmental Contamination and Toxicology, 55(4), 619–626.

    Article  CAS  Google Scholar 

  • Jovic, M., & Stankovic, S. (2014). Human exposure to trace metals and possible public health risks via consumption of mussels Mytilus galloprovincialis from the Adriatic coastal area. Food and Chemical Toxicology, 70, 241–51.

    Article  CAS  Google Scholar 

  • Leung, S. S. F., Chan, S. M., Lui, S., Lee, W. T. K., & Davies, D. P. (2000). Growth and nutrition of Hong Kong children aged 0–7 years. Journal of Paediatric Child and Health, 36, 56–65.

    Article  CAS  Google Scholar 

  • Leung, H. M., Leung, A. O. W., Wang, H. S., Ma, K. K., Liang, Y., Ho, K. C., Cheung, K. C., Tohidi, F., & Yung, K. K. L. (2014). Assessment of heavy metals/metalloid (As, Pb, Cd, Ni, Zn, Cr, Cu, Mn) concentrations in edible fish species tissue in the Pearl River Delta (PRD), China. Marine Pollution Bulletin, 78, 235–245.

    Article  CAS  Google Scholar 

  • Li, H. B., Yu, S., Li, G. L., Liu, Y., Yu, G. B., Deng, H., Wu, S. C., & Wong, M. H. (2012). Urbanization increased metal levels in lake surface sediment and catchment topsoil of waterscape parks. Science of Total Environment, 432, 202–209.

    Article  CAS  Google Scholar 

  • Li, J., Huang, Z. Y., Hu, Y., & Yang, H. (2013). Potential risk assessment of heavy metals by consuming shellfish collected from Xiamen, China. Environmental Science and Pollution Research, 20, 2937–47.

    Article  CAS  Google Scholar 

  • Liu, C., Huang, H. J., Wang, H. C., Chung, P. Y., & Huang, K. H. (1996). Liver metallothionein levels and metal content in fish of Chung-Kung stream, Taiwan- Tilapia and Liza macrolepsis. Chemistry and Ecology, 12, 125–134.

    Article  CAS  Google Scholar 

  • Lustberg, M., & Silbergeld, E. (2002). Blood lead levels and mortality. Archives of International Medical, 162, 2443–2449.

    Article  CAS  Google Scholar 

  • Meche, A., Martins, M. C., Lofrano, B. E. S. N., Hardaway, C. J., Merchant, M., & Verdade, L. (2010). Determination of heavy metals by inductively coupled plasma-optical emission spectrometry in fish from the Piracicaba River in Southern Brazil. Microchemical Journal, 94, 171–174.

    Article  CAS  Google Scholar 

  • MFR (Malaysian Food Regulation). (1985). Malaysian law on food and drugs. Kuala Lumpur: Malaysian Law Publishers.

    Google Scholar 

  • Nakayama, S. M. M., Ikenaka, Y., Muzandu, K., Choongo, K., Oroszlany, B., Teraoka, H., Mizuno, N., & Ishizuka, M. (2010). Heavy metal accumulation in lake sediments, fish (Oreochromis niloticus and Serranochromis thumbergi), and crayfish (Cherax quadricarinatus) in lake Itezhi-tezhi and lake Kariba, Zambia. Archives of Environmental Contamination and Toxicology, 29, 291–300.

    Article  Google Scholar 

  • Nordberg, G.F., Fowler, B.A., Nordberg, M., & Friberg, L.T. (2007). Handbook on the toxicology of metals, 3rd edn. Academic Press.

  • Otachi, E. O., Körner, W., Avenant-Oldewage, A., Fellner-Frank, C., & Jirsa, F. (2014). Trace elements in sediments, blue spotted tilapia Oreochromis leucostictus (Trewavas, 1933) and its parasite Contracaecum multipapillatum from Lake Naivasha, Kenya, including a comprehensive health risk analysis. Environmental Science and Pollution Research, 21, 7339–7349.

    Article  CAS  Google Scholar 

  • Prasad, A. S. (1983). The role of zinc in gastrointestinal and liver disease. Clinical Gastroenterology, 12, 713–741.

    CAS  Google Scholar 

  • Rahman, M. R., Molla, H. A., Saha, N., & Rahman, A. A. (2012). Study on heavy metals levels and its risk assessment in some edible fishes from Bangshi River, Savar, Dhaka, Bangladesh. Food Chemistry, 134, 1847–1854.

    Article  CAS  Google Scholar 

  • Roach, A. C., Maher, W., & Krikowa, F. (2008). Assessment of metals in fish from Lake Macquarie, New South Wales, Australia. Ach. Environmental Contamination and Toxicology, 54, 292–308.

    Article  CAS  Google Scholar 

  • Roesijadi, G. (1992). Metallothioneins in metal regulation and toxicity in aquatic animals. Aquatic Toxicology, 22, 81–113.

    Article  CAS  Google Scholar 

  • Saha, N., & Zaman, M. R. (2013). Evaluation of possible health risks of heavy metals by consumption of foodstuffs available in the central market of Rajshahi City, Bangladesh. Environmental Monitoring and Assessment, 185(5), 3867–3878.

    Article  CAS  Google Scholar 

  • Storelli, M. M. (2008). Potential human health risks from metals (Hg, Cd, and Pb) and polychlorinated biphenyls (PCBs) via seafood consumption: estimation of target hazard quotients (THQs) and toxic equivalents (TEQs). Food and Chemical Toxicology, 46(8), 2782–2788.

    Article  CAS  Google Scholar 

  • Štrbac, S., Šajnović, A., Budakov, L., Vasić, N., Kašanin-Grubin, M., Simonović, P., & Jovančićević, B. (2014). Metals in the sediment and liver of four fish species from different trophic levels in Tisza River, Serbia. Chemistry and Ecology, 30(2), 169–186.

    Article  Google Scholar 

  • Taweel, A., Shuhaimi-Othman, M., & Ahmad, A. K. (2013). Assessment of heavy metals in tilapia fish (Oreochromis niloticus) from the Langat River and Engineering Lake in Bangi, Malaysia, and evaluation of the health risk from tilapia consumption. Ecotoxicology and Environmental Safety, 93, 45–51.

    Article  CAS  Google Scholar 

  • Terra, B. F., Araújo, F. G., Calza, C. F., Lopes, R. T., & Teixeira, T. P. (2008). Heavy metal in tissues of three fish species from different trophic levels in a tropical Brazilian river. Water, Air, and Soil Pollution, 187, 275–284.

    Article  CAS  Google Scholar 

  • USEPA (US Environmental Protection Agency). (1989). Guidance manual for assessing human health risks from chemically contaminated, fish and shellfish. EPA-503/8-89-002. USEPA, Washington DC.

  • USEPA (US Environmental Protection Agency). (2000). Risk-based concentration table. Philadelphia PA: USEPA, Washington, DC.

  • USEPA (US Environmental Protection Agency). (2004). Integrated risk information system (IRIS) on lead and compounds (inorganic). National Center for Environmental Assessment. Washington, DC: Office of Research and Development. Last revised 2004. Available online at: http://www.epa.gov/iris/subst/0277.htm#bib, 2004. (Accessed on 4 Feb 2014).

  • USEPA (US Environmental Protection Agency). (2008). Integrated risk information system. CRC.

  • USEPA (US Environmental Protection Agency). 2012. Regional screening level (RSL) fish ingestion table, November 2012. Available at: http://www.epa.gov/reg3hwmd/risk/human/pdf/NOV_2012_FISH.pdf

  • USEPA (US Environmental Protection Agency). (2015). Human health risk assessment. Regional screening level (RSL)—summary table. Available online at: http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/Generic_Tables/docs/master_sl_table_run_JAN2015.pdf, 2015. (Accessed on 10 May 2015).

  • USFDA (US Food and Drug Administration). (2007). National shellfish sanitation program. Guide for the control of molluscan shellfish 2007. Guidance documents chapter II. Growing areas: 04. Action levels, tolerances and guidance levels for poisonous or deleterious substances in seafood. Available online at: http://www.issc.org/client_resources/2007%20nssp%20guide/section%20iv%20chap%20ii%20.04.pdf, 2007. (Accessed on 4 Feb 2014).

  • Višnjic, J. Z., Jaric, I., Jovanovic, L. J., Škoric, S., Smederevac, L. M., Nikˇcevic, M., & Lenhardt, M. (2010). Heavy metal and trace element accumulation in muscle, liver and gills of the Pontic shad (Alosa immaculata Bennet 1835) from the Danube River (Serbia). Microchemical Journal, 95, 341–344.

    Article  Google Scholar 

  • Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59, 1217–1232.

    Article  CAS  Google Scholar 

  • WHO (World Health Organization). (1989). Heavy metals—environmental aspects. Environment Health Criteria No. 85, Geneva, 1989.

  • WHO (World Health Organization). (1996). Health criteria other supporting information. In Guidelines for drinking water quality (2nd ed., pp. 31–388). Geneva: WHO.

    Google Scholar 

  • Yang, J., Chen, L., Liu, L.-Z., Shi, W.-L., & Meng, X.-Z. (2014). Comprehensive risk assessment of heavy metals in lake sediment from public parks in Shanghai. Ecotoxicology and Environmental Safety, 102, 129–135.

    Article  CAS  Google Scholar 

  • Yap, C. K., Ismail, A., Tan, S. G., & Omar, H. (2002). Concentration of Cu and Pb in the offshore and intertidal sediments of the west coast of Peninsular Malaysia. Environment International, 28, 467–479.

    Article  CAS  Google Scholar 

  • Yap, C. K., Ismail, A., Omar, H., & Tan, S. G. (2003). Accumulation, depuration and distribution of cadmium and zinc in the green-lipped mussel Perna viridis (Linnaeus) under laboratory conditions. Hydrobiologia, 498, 151–160.

    Article  CAS  Google Scholar 

  • Yap, C. K., Edward, F. B., Emila, R. A. A., Ainey, F. I., Ismail, A., Tan, S. G., & Sharizat, Y. (2008). Determination of contamination and bioavailabilities of heavy metals (Cu, Cd, Zn, Pb and Ni) in the Serdang Urban Lake by using guppy fish Poecilia reticulata. Trends in Applied Science and Research, 3, 69–75.

    Article  CAS  Google Scholar 

  • Yi, Y., Yang, Z., & Zhang, S. (2011). Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environmental Pollution, 159, 2575–2585.

    Article  CAS  Google Scholar 

  • Zhao, S., Feng, C., Quan, W., Chen, X., Niu, J., & Shen, Z. (2012). Role of living environments in the accumulation characteristics of heavy metals in fishes and crabs in the Yangtze River Estuary, China. Marine Pollution Bulletin, 64, 1163–1171.

    Article  CAS  Google Scholar 

  • Zweig, R.D, Morton, J.D., & Stewart, M.M. (1999). Source guide for assessment. The World Bank Washington.

Download references

Acknowledgments

The financial support provided through the Research University Grant Scheme (RUGS) [Vote no.: 91986], by Universiti Putra Malaysia, is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chee Kong Yap.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yap, C.K., Jusoh, A., Leong, W.J. et al. Potential human health risk assessment of heavy metals via the consumption of tilapia Oreochromis mossambicus collected from contaminated and uncontaminated ponds. Environ Monit Assess 187, 584 (2015). https://doi.org/10.1007/s10661-015-4812-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4812-z

Keywords

Navigation