Skip to main content

Advertisement

Log in

An integrated, multisensor system for the continuous monitoring of water dynamics in rice fields under different irrigation regimes

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The cultivation of rice, one of the most important staple crops worldwide, has very high water requirements. A variety of irrigation practices are applied, whose pros and cons, both in terms of water productivity and of their effects on the environment, are not completely understood yet. The continuous monitoring of irrigation and rainfall inputs, as well as of soil water dynamics, is a very important factor in the analysis of these practices. At the same time, however, it represents a challenging and costly task because of the complexity of the processes involved, of the difference in nature and magnitude of the driving variables and of the high variety of field conditions. In this paper, we present the prototype of an integrated, multisensor system for the continuous monitoring of water dynamics in rice fields under different irrigation regimes. The system consists of the following: (1) flow measurement devices for the monitoring of irrigation supply and tailwater drainage; (2) piezometers for groundwater level monitoring; (3) level gauges for monitoring the flooding depth; (4) multilevel tensiometers and moisture sensor clusters to monitor soil water status; (5) eddy covariance station for the estimation of evapotranspiration fluxes and (6) wireless transmission devices and software interface for data transfer, storage and control from remote computer. The system is modular and it is replicable in different field conditions. It was successfully applied over a 2-year period in three experimental plots in Northern Italy, each one with a different water management strategy. In the paper, we present information concerning the different instruments selected, their interconnections and their integration in a common remote control scheme. We also provide considerations and figures on the material and labour costs of the installation and management of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alberto, M. C. R., Wassmann, R., Buresh, R. J., Quilty, J. R., Correa, T. Q., Sandro, J. M., & Centeno, C. A. R. (2014). Measuring methane flux from irrigated rice fields by eddy covariance method using open-path gas analyzer. Field Crops Research, 160, 12–21. doi:10.1016/j.fcr.2014.02.008.

    Article  Google Scholar 

  • Alberto, M. C. R., Wassmann, R., Hirano, T., Miyata, A., Hatano, R., Kumar, A., et al. (2011). Comparisons of energy balance and evapotranspiration between flooded and aerobic rice fields in the Philippines. Agricultural Water Management, 98(9), 1417–1430. doi:10.1016/j.agwat.2011.04.011.

    Article  Google Scholar 

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration : guidelines for computing crop water requirements. Rome:Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Antonopoulos, V. Z. (2010). Modelling of water and nitrogen balances in the ponded water and soil profile of rice fields in Northern Greece. Agricultural Water Management, 98(2), 321–330. doi:10.1016/j.agwat.2010.08.026.

    Article  Google Scholar 

  • Belder, P., Bouman, B. A.., Cabangon, R., Guoan, L., Quilang, E. J.., Yuanhua, L., et al. (2004). Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agricultural Water Management, 65(3), 193–210. doi:10.1016/j.agwat.2003.09.002

    Article  Google Scholar 

  • Belder, P., Bouman, B. A. M., & Spiertz, J. H. J. (2007). Exploring options for water savings in lowland rice using a modelling approach. Agricultural Systems, 92(1–3), 91–114. doi:10.1016/j.agsy.2006.03.001.

    Article  Google Scholar 

  • Bethune, M., Austin, N., & Maher, S. (2001). Quantifying the water budget of irrigated rice in the Shepparton Irrigation Region, Australia. Irrigation Science, 20(3), 99–105. doi:10.1007/s002710100035.

    Article  Google Scholar 

  • Bouman, B. A. M., Humphreys, E., Tuong, T. P., & Barker, R. (2007). Rice and water. In Advances in Agronomy (Vol. 92, pp. 187–237). Elsevier. http://linkinghub.elsevier.com/retrieve/pii/S0065211304920044. Accessed 20 July 2015

  • Bouman, B. A. M., Peng, S., Castañeda, A. R., & Visperas, R. M. (2005). Yield and water use of irrigated tropical aerobic rice systems. Agricultural Water Management, 74(2), 87–105. doi:10.1016/j.agwat.2004.11.007.

    Article  Google Scholar 

  • Cabangon, R. J., Tuong, T. P., & Abdullah, N. B. (2002). Comparing water input and water productivity of transplanted and direct-seeded rice production systems. Agricultural Water Management, 57(1), 11–31 Accessed 27 May 2015.

    Article  Google Scholar 

  • Cabangon, R. J., Tuong, T. P., Castillo, E. G., Bao, L. X., Lu, G., Wang, G., et al. (2004). Effect of irrigation method and N-fertilizer management on rice yield, water productivity and nutrient-use efficiencies in typical lowland rice conditions in China. Paddy and Water Environment, 2(4), 195–206. doi:10.1007/s10333-004-0062-3.

    Article  Google Scholar 

  • Campbell Scientific, Inc. (2011). RF401-Series & RF430-Series Spread Spectrum Radio Modems. www.campbellsci.com. Accessed 04 May 2012.

  • Campbell Scientific, Inc. (2012). LoggerNet Version 4.1 Instruction Manual. www.campbellsci.com

  • Chen, S.-K., & Liu, C. W. (2002). Analysis of water movement in paddy rice fields (I) experimental studies. Journal of Hydrology, 260(1–4), 206–215. doi: http://dx.doi.org/10.1016/S0022-1694(01)00615–1

  • Clemmens, A. J., Wahl, T. L., Bos, M. G., & Replogle, J. A. (2001). Water measurement with flumes and weirs (4th ed., ). Littleton:Water Resources Publications, LLC..

    Google Scholar 

  • De Silva, C. S., & Rushton, K. R. (2008). Representation of rainfed valley ricefields using a soil–water balance model. Agricultural Water Management, 95(3), 271–282. doi:10.1016/j.agwat.2007.10.010.

    Article  Google Scholar 

  • Dong, B., Molden, D., Loeve, R., Li, Y. H., Chen, C. D., & Wang, J. Z. (2004). Farm level practices and water productivity in Zhanghe Irrigation System. Paddy and Water Environment, 2(4), 217–226. doi:10.1007/s10333-004-0066-z.

    Article  Google Scholar 

  • Dunn, B. W., & Gaydon, D. S. (2011). Rice growth, yield and water productivity responses to irrigation scheduling prior to the delayed application of continuous flooding in south-east Australia. Agricultural Water Management, 98(12), 1799–1807. doi:10.1016/j.agwat.2011.07.004.

    Article  Google Scholar 

  • ERSAL (1996). I suoli della Lomellina centro-meridionale : progetto “Carta pedologica” (p. 127). Milano:Ente regionale di sviluppo agricolo della Lombardia.

    Google Scholar 

  • Facchi, A., Gharsallah, O., Chiaradia, E. A., Bischetti, G. B., & Gandolfi, C. (2013). Monitoring and modelling evapotranspiration in flooded and aerobic rice fields. Procedia Environmental Sciences, 19, 794–803. doi:10.1016/j.proenv.2013.06.088.

    Article  Google Scholar 

  • Feng, L., Bouman, B. A. M., Tuong, T. P., Cabangon, R. J., Li, Y., Lu, G., & Feng, Y. (2007). Exploring options to grow rice using less water in northern China using a modelling approach. Agricultural Water Management, 88(1–3), 1–13. doi:10.1016/j.agwat.2006.10.006

  • Govindarajan, S., Ambujam, N. K., & Karunakaran, K. (2008). Estimation of paddy water productivity (WP) using hydrological model: an experimental study. Paddy and Water Environment, 6(3), 327–339. doi:10.1007/s10333-008-0131-0.

    Article  Google Scholar 

  • Hasegawa, S. (1992). Soil and water engineering for paddy field management (Vol. 26). Thailand: Asian Institute of Technology, Bangko. http://EconPapers.repec.org/RePEc:eee:agiwat:v:26:y:1994:i:1-2:p:149-150

  • Jang, T. I., Kim, H. K., Seong, C. H., Lee, E. J., & Park, S. W. (2012). Assessing nutrient losses of reclaimed wastewater irrigation in paddy fields for sustainable agriculture. Agricultural Water Management, 104, 235–243. doi:10.1016/j.agwat.2011.12.022.

    Article  Google Scholar 

  • Jung, J.-W., Yoon, K.-S., Choi, D.-H., Lim, S.-S., Choi, W.-J., Choi, S.-M., & Lim, B.-J. (2012). Water management practices and SCS curve numbers of paddy fields equipped with surface drainage pipes. Agricultural Water Management, 110, 78–83. doi:10.1016/j.agwat.2012.03.014.

    Article  Google Scholar 

  • Khepar, S. D., Yadav, A. K., Sondhi, S. K., & Siag, M. (2000). Water balance model for paddy fields under intermittent irrigation practices. Irrigation Science, 19(4), 199–208 Accessed 27 May 2015.

    Article  Google Scholar 

  • Köppen, W., Geiger, R., Borchardt, W., Wegener, K., Wagner, A., Knoch, K., et al. (1936). In Handbuch der klimatologie (vol. 3, ). Berlin: Gebrüder Borntraeger.

    Google Scholar 

  • Masseroni, D., Facchi, A., Romani, M., Chiaradia, E. A., Gharsallah, O., & Gandolfi, C. (2014). Surface energy flux measurements in a flooded and an aerobic rice field using a single eddy-covariance system. Paddy and Water Environment. doi:10.1007/s10333-014-0460-0.

    Google Scholar 

  • Natuhara, Y. (2013). Ecosystem services by paddy fields as substitutes of natural wetlands in Japan. Ecological Engineering, 56, 97–106. doi:10.1016/j.ecoleng.2012.04.026.

    Article  Google Scholar 

  • Sharma, P. K., Bhushan, L., Ladha, J. K., Naresh, R. K., & Gupta, R. K. (2002). Crop-water relations in rice-wheat cropping under different tillage systems and water-management practices in a marginally sodic, medium-textured soil. In B. A. M. Bouman, H. Hengsdijk, B. Hardy, P. Bindraban, T. Tuong, & J. Ladha (Eds.), Water-wise rice production. Metro Manila, Philippines : [Wageningen]: IRRI; Plant Research International.

  • Singh, A. K., Choudhury, B. U., & Bouman, B. A. M. (2002). Effects of rice establishment methods on crop performance, water use, and mineral nitrogen. In B. A. M. Bouman, H. Hengsdijk, B. Hardy, P. Bindraban, T. Tuong, & J. Ladha (Eds.), Water-wise rice production. Metro Manila, Philippines : [Wageningen]: IRRI; Plant Research International.

  • Sudhir-Yadav, Humphreys, E., Kukal, S. S., Gill, G., & Rangarajan, R. (2011). Effect of water management on dry seeded and puddled transplanted rice. Field Crops Research, 120(1), 123–132. doi:10.1016/j.fcr.2010.09.003

  • Tabbal, D. F., Bouman, B. A. M., Bhuiyan, S. I., Sibayan, E. B., & Sattar, M. A. (2002). On-farm strategies for reducing water input in irrigated rice; case studies in the Philippines. Agricultural Water Management, 56(2), 93–112 Accessed 27 May 2015.

    Article  Google Scholar 

  • Thakur, A. K., Mohanty, R. K., Patil, D. U., & Kumar, A. (2014). Impact of water management on yield and water productivity with system of rice intensification (SRI) and conventional transplanting system in rice. Paddy and Water Environment, 12(4), 413–424. doi:10.1007/s10333-013-0397-8.

    Article  Google Scholar 

  • Tuong, T. P., Bouman, B. A. M., & Mortimer, M. (2005). More rice, less water-integrated approaches for increasing water productivity in irrigated rice-based systems in Asia. Plant Production Science, 8(3), 231–241 Accessed 20 July 2015.

    Article  Google Scholar 

  • Violante, P. (2000). Metodi di analisi chimica del suolo. Franco Angeli.

  • Vu, S. H., Watanabe, H., & Takagi, K. (2005). Application of FAO-56 for evaluating evapotranspiration in simulation of pollutant runoff from paddy rice field in Japan. Agricultural Water Management, 76(3), 195–210. doi:10.1016/j.agwat.2005.01.012.

    Article  Google Scholar 

  • Watanabe, H., Nguyen, M. H. T., Souphasay, K., Vu, S. H., Phong, T. K., Tournebize, J., & Ishihara, S. (2007). Effect of water management practice on pesticide behavior in paddy water. Agricultural Water Management, 88(1–3), 132–140. doi:10.1016/j.agwat.2006.10.009.

    Article  Google Scholar 

  • Watanabe, H., & Takagi, K. (2000). A simulation model for predicting pesticide concentrations in paddy water and surface soil II. Model validation and application. Environmental Technology, 21(12), 1393–1404. doi:10.1080/09593332208618169.

    Article  CAS  Google Scholar 

  • Xiaoguang, Y., Bouman, B. A. M., Huaqi, W., Zhimin, W., Junfang, Z., & Bin, C. (2005). Performance of temperate aerobic rice under different water regimes in North China. Agricultural Water Management, 74(2), 107–122. doi:10.1016/j.agwat.2004.11.008.

    Article  Google Scholar 

  • Yagi, K., Tsuruta, H., Kanda, K., & Minami, K. (1996). Effect of water management on methane emission from a Japanese rice paddy field: automated methane monitoring. Global Biogeochemical Cycles, 10(2), 255–267. doi:10.1029/96GB00517.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research described in this paper was financed by Regione Lombardia (BIOGESTECA Project) and the Italian Ministry of Education, Universities and Research (PRIN2010-2011), which are gratefully acknowledged. The authors also wish to thank Gianluca Beltarre and his staff for the assistance in the field work.

Disclaimer

The brand names of sensors and any commercial products or materials mentioned in this publication are for identification purpose only and do not constitute any endorsement or recommendation for use, by the University of Milan and the co-authors’ institutions.

Authors’ contributions

The authors contributed equally.

Conflict of interests

The authors declare that they have no competing interests.

Funding

The work was supported by Regione Lombardia under the grants “Fondo per la promozione di accordi istituzionali,” Project Biogesteca – Piattaforma di biotecnologie verdi e di tecniche gestionali per un sistema agricolo ad elevata sostenibilità ambientale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Antonio Chiaradia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiaradia, E.A., Facchi, A., Masseroni, D. et al. An integrated, multisensor system for the continuous monitoring of water dynamics in rice fields under different irrigation regimes. Environ Monit Assess 187, 586 (2015). https://doi.org/10.1007/s10661-015-4796-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4796-8

Keywords

Navigation