Skip to main content

Advertisement

Log in

Reservoir sediments: a sink or source of chemicals at the surface water-groundwater interface

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study delineates the physical, chemical, and biological effects resulting from anthropogenic and endogenic activities in a sensitive dammed reservoir situated in a semi-arid region. The reservoir is characterized by two major flow regimes: a wet fill hydrologic regime and a dry spill one. A seasonal sampling campaign was carried out over a period of 2 years (2011–2013) where water samples were collected across the water column and from piezometers just outside the perimeter of the reservoir. Similarly, sediments were collected from the corresponding areas beneath the water column. The water samples were analyzed for environmental isotopic ratios, elemental composition, and physical, biological and chemical parameters, whereas the sediment and algal samples were subjected to physical, mineralogical, spectroscopic, and microscopic analyses. This investigation indicated that the dam had resulted in the alteration of the biogeochemical cycle of nutrients as well as the degradation of the sediment and water quality. The hydrological and biogeochemical processes were found to induce vertical downward transport of chemicals towards the fine grained calcareous sediments during the fill mode, whereas the sediments acted as a source of a chemical flux upward through the water column and downward towards the groundwater during the spill mode. The geomorphological characteristics of the reservoir enhanced the strong hydrological connectivity between the surface water and the groundwater where the reservoir responded quickly to natural and anthropogenic changes in the upper watershed. The water and sediments in the sensitive spill mode were of poor quality and should receive more attention due to the potential hazard for the associated hydro-project and the sustainability of the agricultural soil in the long term. Thus, a safe water and sediment management plan should be implemented in order to improve the dam functionality and to safeguard the precious water resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akin, B. S., Atıcı, T., Katircioglu, H., & Keskin, F. (2010). Investigation of water quality on Gökcekaya dam lake using multivariate statistical analysis, in Eskisehir, Turkey. Environ Earth Science, 63, 1–11.

    Google Scholar 

  • Alaoui AM., Choura M., Maanan M., Zourarah B., Robin M., Conceicao M-F., Andrade C., Khalid M., Carruesco C., (2010). Metal fluxes to the sediments of the Moulay Bousselham lagoon, Morocco. Environ Earth Sci., 61, 275–286.

    Article  CAS  Google Scholar 

  • Argese, E., Ramieri, E., Bettiol, C., Pavoni, B., Chiozzotto, E., & Sfriso, A. (1997). Pollutant exchange at the water sediment interface in the Venice canals. Water, Air and Soil pollution, 99, 255–263.

    Google Scholar 

  • Arnon, D. A. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1–15.

    Article  CAS  Google Scholar 

  • Atkinson CA., Jolley DF., Simpson SL. (2007). Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere, 69, 1428–1437.

    Article  CAS  Google Scholar 

  • Balkis, N., Aksu, A., Okus, E., & Apak, R. (2010). Heavy metal concentrations in water, suspended matter, and sediment from Gökova Bay, Turkey. Environ Monit Assess., 167, 359–370.

    Article  CAS  Google Scholar 

  • Balogh SJ., Triplett LD., Engstrom DR., Yabing NH., (2010). Historical trace metal loading to a large river recorded in the sediments of Lake St. Croix, USA. J Paleolimnol., 44: 517–530.

  • BAMAS (2005). BAMAS review report for Litani Basin Management Advisory Services (BAMAS), Bureau for Asia and the Near East; U.S. Agency for International Development 2005; Litani Water Quality Management Project.

  • Banks, J. L., Ross, D. J., Keough, M. J., Eyre, B. D., & Macleod, C. K. (2012). Measuring hypoxia induced metal release from highly contaminated estuarine sediments during a 40 day laboratory incubation experiment. Science of the Total Environment, 420, 229–237.

    Article  CAS  Google Scholar 

  • Blais, J. M., & Kalff, J. (1993). Atmospheric loading of Zn, Cu, Ni, Cr, and Pb to lake sediments: the role of catchment, lake morphometry, and physico-chemical properties of the elements. Biogeochemistry, 23, 1–22.

    Article  CAS  Google Scholar 

  • Boehrer B., Schultze M., (2008). Stratification of lakes. Reviews of Geophysics, RG2005 46, 1–27.

  • Brandes JA., Devol AH., (1997). Isotopic fractionation of oxygen and nitrogen in coastal marine sediments. Geochimica et Cosmochimica Acta, 61, 1793–1801.

    Article  CAS  Google Scholar 

  • Broadbent, F. E. (1953). The soil organic fraction. Advances in Agronmy, 5, 153–183.

    Article  Google Scholar 

  • Callender, E., & Rice, K. (2000). The urban environmental gradient: anthropogenic influences on the spatial and temporal distributions of lead and zinc in sediments. Environmental Science & Technology, 34, 232–238.

    Article  CAS  Google Scholar 

  • Cartwright, I., Weaver, T. R., Cendón, D. I., Fifield, L. K., Tweed, S. O., Petrides, B., & Swane, I. (2012). Constraining groundwater flow, residence times, inter-aquifer mixing, and aquifer properties using environmental isotopes in the southeast Murray Basin, Australia. Appl. Geochem;, 27, 1698–1709.

    Article  CAS  Google Scholar 

  • Casciotti KL., Sigman DM., Hastings MG., Bohlke JK., Hilkert A., (2002). Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Analytical Chemistry, 74 (19), 4905–4912.

    Article  CAS  Google Scholar 

  • Chon, H.-S., Ohandja, D.-G., & Voulvoulis, N. (2012). The role of sediments as a source of metals in river catchments. Chemosphere, 88, 1250–1256.

    Article  CAS  Google Scholar 

  • Darwish, T., Atallah, T., Francis, R., Saab, C., Jomaa, I., Shaaban, A., Sakka, H., & Zdruli, P. (2011). Observations on soil and groundwater contamination with nitrate: a case study from Lebanon-east Mediterranean. Agricultural Water Management, 99, 74–84.

    Article  Google Scholar 

  • Delfino, J. J. (1976). Great lakes: chemical monitoring. Environmental Science & Technology, 10, 968–990.

    Article  Google Scholar 

  • Delsontro T., Mcginnis DF., Sobek S., Ostrovsky I., Wehrli B., (2010). Extreme methane emissions from a Swiss hydropower reservoir: contribution from bubbling sediments. Environmental Science & Technology, 44, 2419–2425.

    Article  CAS  Google Scholar 

  • Develle A-L., Herreros J., Vidal L., Sursock A., Gasse F. (2010). Controlling factors on a paleo-lake oxygen isotope record (Yammouˆneh, Lebanon) since the last glacial maximum. Quaternary Science Reviews, 29, 865–886.

    Article  Google Scholar 

  • Duman, F., Aksoy, A., & Demirezen, D. (2007). Seasonal variability of heavy metals in surface sediment of Lake Sapanca, Turkey. Environ Monit Assess., 133, 277–283.

    Article  CAS  Google Scholar 

  • Ebrahimpour, M., & Mushrifah, I. (2008). Heavy metal concentrations in water and sediments in Tasik Chini, a freshwater lake, Malaysia. Environ Monit Assess., 141, 297–307.

    Article  CAS  Google Scholar 

  • Ekpo, B. O., & Ibok, U. J. (1998). Seasonal variation and partition of trace metals (Fe, Zn, Cu, Mn, Cr, Cd and Pb) in surface sediments: relationship with physico-chemical variables of water from the Calabar River, South Eastern Nigeria. Environmental Geochemistry and Health, 20, 113–121.

    Article  CAS  Google Scholar 

  • El-Fadel, M., Maroun R., Bsat R., Makki M., Reiss P., and Rothberg D., (2003). Water quality assessment of the upper Litani River basin and Lake Qaraoun—Lebanon. Integrated Water and Coastal Resources Management - Indefinite Quantity Contract. Bureau for Asia and the Near East. U.S. Agency for International Development. 77p

  • Figueiredo RO., Ovalle ARC., Eduardo de Rezende C., Martinelli A.L. (2011). Carbon and nitrogen in the lower basin of the Paraíba do Sul River, Southeastern Brazil: element fluxes and biogeochemical processes. Ambi-Agua, 6, 7–37.

  • Gadd GM., Griffiths AJ., (1978). Microorganisms and heavy metal toxicity. Microbial Ecology, 4, 303–317.

    Article  CAS  Google Scholar 

  • Halder, J., Decrouy, L., & Vennemann, T. W. (2013). Mixing of Rhône River water in Lake Geneva (Switzerland-France) inferred from stable hydrogen and oxygen isotope profiles. Journal of Hydrology, 477, 152–164.

    Article  CAS  Google Scholar 

  • Hart BT., Van Dok W., Djuangsih N., (2002). Nutrient budget for Saguling Reservoir, West Java, Indonesia. Water Research, 36, 2152–2160.

    Article  CAS  Google Scholar 

  • He, T., Feng, X., Guo, Y., Qiu, G., Li, Z., Liang, L., & Lu, J. (2008). The impact of eutrophication on the biogeochemical cycling of mercury species in a reservoir: a case study from Hongfeng Reservoir, Guizhou, China. Environmental Pollution, 154, 56–67.

    Article  CAS  Google Scholar 

  • Hiller, E., Jurkovic, L., & Sutriepka, M. (2010). Metals in the surface sediments of selected water reservoirs, Slovakia. Bull Environ Contam Toxicol, 84, 635–640.

    Article  CAS  Google Scholar 

  • Jeelani G., Bhat NA., Shivanna K., Bhat MY., (2011). Geochemical characterization of surface water and spring water in SE Kashmir Valley, western Himalaya: implications to water–rock interaction. J. Earth Syst. Sci., 120, 921–932.

    Article  CAS  Google Scholar 

  • Kamennaya NA., Ajo-Franklin CM., Northen T., Jansson C., (2012). Cyanobacteria as biocatalysts for carbonate mineralization. Minerals, 2: 338–364.

    Article  CAS  Google Scholar 

  • Korfali, S. I., & Davies, B. E. (2004). Speciation of metals in sediment and water in a river underlain by limestone: role of carbonate species for purification capacity of rivers. Advances in Environmental Research, 8, 599–612.

    Article  CAS  Google Scholar 

  • Korfali S., Jurdi M., Davies BE.(2006).Variation of metals in bed sediments of Qaraaoun Reservoir, Lebanon. Environ Monit Assess, 115, 307–319.

  • Kraus TEC., Bergamaschi BA., Hernes PJ., Doctor D., Kendall C., Downing BD., Losee RF., (2011). How reservoirs alter drinking water quality: organic matter sources, sinks, and transformations. Lake and Reservoir Management, 27, 205–219.

    Article  CAS  Google Scholar 

  • Kremer, B., Kazmierczak, J., & Stall, L. J. (2008). Calcium carbonate precipitation in cyanobacterial mats from sandy tidal flats of the North Sea. Geobiology, 6, 46–56.

    CAS  Google Scholar 

  • Krivtsov, V., & Sigee, D. C. (2005). Importance of biological and abiotic factors for geochemical cycling in a freshwater eutrophic lake. Biogeochemistry, 74, 205–230.

    Article  CAS  Google Scholar 

  • Lenzi, M., Gennaro, P., Mercatali, I., Persia, E., Solari, D., & Porrello, S. (2013). Physico-chemical and nutrient variable stratifications in the water column and in macroalgal thalli as a result of high biomass mats in a non-tidal shallow-water lagoon. Marine Pollution Bulletin, 75, 98–104.

    Article  CAS  Google Scholar 

  • Liang, X. Q., Nie, Z. Y., He, M. M., Guo, R., Zhu, C. Y., Chen, Y. X., & Stephan, K. (2013). Application of 15N–18O double stable isotope tracer technique in an agricultural nonpoint polluted river of the Yangtze Delta Region. Environmental Science and Pollution Research, 20, 6972–6979.

    Article  CAS  Google Scholar 

  • Mangion, P. (2011). Biogeochemical consequences of sewage discharge on mangrove environments in east Africa. Vrije Universiteit Brussel, Faculty of Science Earth System Sciences Analytical and Environmental Chemistry; Annex, 4, 179–208.

    Google Scholar 

  • Mart ́ın-Puertas, C., Valero-Garce ́s, B. L., Mata, M. P., Moreno, A., Giralt, S., Mart ́ınez-Ruiz, F., and Jime ́nez-Espejo, F. (2009). Geochem- ical processes in a Mediterranean Lake: a high resolution study of the last 4000 years in Zon ̃ar Lake, southern Spain. J Pale- olimnol, 46, 405–421.

  • Merz, M. (1992). The biology of carbonate precipitation by cyanobacteria. Facies, 26, 81–102.

    Article  Google Scholar 

  • Miao S., DeLaune RD., Jugsujinda A., (2006). Influence of sediment redox conditions on release/solubility of metals and nutrients in a Louisiana Mississippi River deltaic plain freshwater lake. Science of the Total Environment, 371, 334–343.

    Article  CAS  Google Scholar 

  • Mikac, I., Fiket, Ž., Terzić, S., Barešić, N., Mikac, J., & Ahel, M. (2011). Chemical indicators of anthropogenic impacts in sediments of the pristine karst lakes. Chemosphere, 84, 1140–1149.

    Article  CAS  Google Scholar 

  • Miller JR., Kolenbrander L., Lord M., Yurkovich S., Mackin G., (2003). Assessment of changing land-use practices on basin sediment yields and provenance in western North Carolina using multivariate finger printing techniques. Report No. 345 Water Resources Research Institute of The University of North Carolina, WRRI Project No. 70 18 1, USGS Project No. 1434-HQ-96-GR-02689, June, 2003.

  • Ocampo, C. J., Sivapalan, M., & Oldham, C. E. (2006). Field exploration of coupled hydrological and biogeochemical catchment responses and a unifying perceptual model. Advances in Water Resources, 29, 161–180.

    Article  Google Scholar 

  • Peretyazhko, T., Van Cappellen, P., Meile, M., Musso, M., Regnier, P., & Charlet, L. (2005). Biogeochemistry of major redox elements and mercury in a tropical reservoir lake (Petit Saut, French Guiana). Aquatic Geochemistry, 11, 33–55.

    Article  CAS  Google Scholar 

  • Peavy, H. S., & Row, D. R. (1985). Tchobanoglous, G. McGraw Hill Book Company:Environmental Engineering.

    Google Scholar 

  • Roussiez V., Ludwig W., Monaco A., Probst J-L., Bouloubassi I., Buscail R., Saragoni G., (2006). Sources and sinks of sediment-bound contaminants in the Gulf of Lions (NW Mediterranean Sea): a multi-tracer approach. Continental Shelf Research, 26, 1843–1857.

    Article  Google Scholar 

  • Saad Z., Kazpard V., El Samrani AG., Slim K., Ouaini N., (2006). Use of hydrochemistry and environmental isotopes to evaluate water quality, Litani River, Lebanon. Journal of Environmental Hydrology, 2, 1–14.

    Google Scholar 

  • Saad, Z., Kazpard, V., El Samrani, A., Aoun, M., Amacha, N., & Saadeh, M. (2009). Chemical and environmental isotope investigation on hydrodynamics of monomictick lake: a case study on Qaraoun, Lebanon. Journal of Environmental Hydrology;, 17(35), 1–10.

    Google Scholar 

  • Saadeh, M., Semerjian, L., & Amacha, N. (2012). Physicochemical evaluation of the upper Litani River watershed (p. 8). Scientific World Journal:Lebanon. doi:10.1100/2012/462467.

    Google Scholar 

  • Sherr EB., Caron DA., Sherr BF., (1993). Staining of heterotrophic protists for visualization via epifluorescence microscopy, Chapter 26, 213–229. Kemp P.F., Cole J. J., Sherr B.F., Sherr E.B. 1993 Handbook of methods in aquatic microbial ecology. Lewi Pupl., Boca Raton 2013; FL 33431 777p.

  • Siebert C., Geyer S., Möller P., Rosenthal E., Berger D., Guttman J., (2009). Lake Tiberias and its dynamic hydrochemical environment, The water of the Jordan Valley Chapter 3; 2.3.4: 219–246.

  • Sigman DM., Casciotti KL., Andreani M., Barford C., Galanter M., Böhlke JK., (2001). A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Analytical Chemistry, 73, 4145–4153.

    Article  CAS  Google Scholar 

  • Singh AP., Srivastava CP., Srivastava P., (2008) Relationships of heavy metals in natural lake waters with physico-chemical characteristics of waters and different chemical fractions of metals in sediments. Water, Air, and Soil Pollution, 188, 181–193.

    Article  CAS  Google Scholar 

  • Skoulikidis, N., Kaberi, H., & Sakellariou, D. (2008). Patterns, origin and possible effects of sediment pollution in a Mediterranean lake. Ecological effects of water—level fluctuations in lake. Hydrobiologia, 613, 71–83.

    Article  CAS  Google Scholar 

  • Taher AG., Soliman AA., (1999) Heavy metal concentrations in surficial sediments from Wadi El Natrun saline lakes, Egypt. International Journal of Salt Lake Research, 8, 75–92.

    Google Scholar 

  • Taillefert M., Lienemann C-P., Gaillard J-F., Perret D., (2000) Speciation, reactivity, and cycling of Fe and Pb in a meromictic lake. Geochimica et Cosmochimica Acta, 64, 169–183.

    Article  CAS  Google Scholar 

  • Taillefert, M., Neuhuber, S., & Bristow, G. (2007). The effect of tidal forcing on biogeochemical processes in intertidal salt marsh sediments. Geochemical Transaction, 8, 15. doi:10.1186/1467-4866-8.

    Google Scholar 

  • Tuna, A. L., Yilmaz, F., Demirak, A., & Ozdemir, N. (2007). Sources and distribution of trace metals in the Saricay Stream basin of southwestern turkey. Environmental Monitoring and Assessment, 125, 47–57.

    Article  CAS  Google Scholar 

  • Wall LG., Tank JL., Royer TV., Bernot MJ., (2005). Spatial and temporal variability in sediment denitrification within an agriculturally influenced reservoir. Biogeochemistry, 76, 85–111.

    Article  CAS  Google Scholar 

  • Wei, G., Yang, Z., Cui, B., Li, B., Chen, H., Bai, J. H., & Dong, S. K. (2009). Impact of dam construction on water quality and water self-purification capacity of the Lancang River, China. Water Resources Management, 23, 1763–1780.

    Article  Google Scholar 

  • Wildi, W. (2010). Environmental hazards of dams and reservoirs. NEAR Curriculum in Natural Environmental Science, Terre et Environnement, 88, 187–197.

    Google Scholar 

  • Xue HB., Gächter R., Sigg L., (1997). Comparison of Cu and Zn cycling in eutrophic lakes with oxic and anoxic hypolimnion. Aquat.sci, 59, 176–189.

  • Yang, L., Song, X., Zhang, Y., Han, D., Zhang, B., & Long, D. (2012). Characterizing interactions between surface water and groundwater in the Jialu River basin using major ion chemistry and stable isotopes. Hydrol Earth Syst Sci, 16, 4265–4277.

    Article  CAS  Google Scholar 

  • Yuan H-Z., Shen J., Liu E-F., Wang J-J., Meng X-H., (2011). Assessment of nutrients and heavy metals enrichment in surface sediments from Taihu Lake, a eutrophic shallow lake in China. Environmental Geochemistry and Health, 33, 67–81.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been financed by research grant programs of the Lebanese University and the Lebanese Council for Scientific Research. We also acknowledge the support of Azm and Saadé Association, PCSI programs in AUF. Additional funding was provided by the Bureau of International Relations (BRIC) and the Xénophilia Funds of the Université Libre de Bruxelles (ULB). Kind appreciations are extended to the Litani River Authority staff represented by Mr. Ali Tarrif and Ms. Eliane Hayek for their help during fieldwork. We are grateful for the analytical help provided by Prof. Bruno Lartiges (Université Paul Sabatier), Prof. Frank Dehairs (VUB), and Ms. Adriana Anzil (ULB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rawaa Ammar.

Electronic supplemental material

ESM 1

(DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammar, R., Kazpard, V., Wazne, M. et al. Reservoir sediments: a sink or source of chemicals at the surface water-groundwater interface. Environ Monit Assess 187, 579 (2015). https://doi.org/10.1007/s10661-015-4791-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4791-0

Keywords

Navigation