Skip to main content
Log in

Assessment of metal pollution in a former mining area in the NW Tunisia: spatial distribution and fraction of Cd, Pb and Zn in soil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study aims to evaluate the impact of the former mining Touiref district (NW Tunisia) on the spatial distribution of metal contamination. In order to characterize the metal content of the tailings and to assess how far the soils from the district could be impacted by metals, a sampling campaign was conducted. According to the spatial distribution concentration maps of potential toxic elements (PTE), the highest concentrations occur near the flotation tailings and in mining facilities and decrease abruptly with distance. These results confirm that wind is the main agent capable of dispersing metals in a W–E direction, with concentrations exceeding the standards of soil quality for Cd, Pb and Zn over several hundred metres away from the source, facilitated by the small-size fraction and low cohesion of tailings particles. Chemical fractionation showed that Pb and Cd were mainly associated with the acid-soluble fraction (carbonates) and Fe-(oxy) hydroxides, while Zn was mainly associated with Fe-(oxy) hydroxides but also with sulphides. Thus, the immobilization of metals in solution may be favoured by the alkaline conditions, promoted by carbonates dissolution. However, being carbonate important-bearing phases of Cd and Pb (but also for Zn), the dissolution facility of these minerals may enhance the release of metals, particularly far away from the mine where the physicochemical conditions can be different. Also, the metal uptake by plants in these alkaline conditions may be favoured, especially if secondary phases with high sorption ability are reduced at this site. A remediation plan to this area is needed, with particularly attention in the confinement of the tailings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • AFNOR (1999). Recueil de normes: qualité des sols. Paris:Association Française de Normalisation.

    Google Scholar 

  • AFNOR (2001). NF ISO 14,869–1. Qualité du sol. Mise en solution pour la détermination des teneurs élémentaires totales: Partie 1. Mise en solution par l’acide fluorhydrique et l’acide perchlorique.

  • Akai, J., & Anawar, H. M. (2013). Mineralogical approach in elucidation of contamination mechanism for toxic trace elements in the environment: special reference to arsenic contamination in groundwater. Physics and Chemistry of the Earth, Parts A/B/C, 58–60, 2–12.

    Article  Google Scholar 

  • Anju, M., & Banerjee, D. K. (2011). Associations of cadmium, zinc and lead in soils from a lead and zinc mining area as studied by single and sequential extractions. Environmental Monitoring and Assessment, 176, 67–85.

    Article  CAS  Google Scholar 

  • Anne, P. (1945). Carbone organique (total) du sol et de l’humus. Annales Agronomy, 15, 161–172.

    CAS  Google Scholar 

  • Aubertin, M., Bussière, B., & Chapuis, R. P. (1996). Hydraulic conductivity of homogenized tailings from hard rock mines. Canadian Geotechnical Journal, 33(3), 470–482.

    Article  Google Scholar 

  • Bååth, E. (1989). Effects of heavy metals in soil on microbial processes and populations (a review). Water, Air, and Soil Pollution, 47, 335–379.

    Article  Google Scholar 

  • Baize, D. (2000). Teneurs totales en “métaux lourds” dans les sols français résultats généraux du programme ASPITET. Courrier de l’Environnement de l’INRA 39, 39–54.

  • Baize, D., & Sterckeman, T. (2001). Of the necessity of knowledge of the natural pedogeochemical background content in the evaluation of the contamination of soils by trace elements. Science of the Total Environment, 264, 127–139.

    Article  CAS  Google Scholar 

  • Baize, D., & Tomassone, R. (2003). Modélisation empirique du transfert du cadmium et du zinc des sols vers les grains de blé tendre Programme GESSOL – La Châtre. Étude et Gestion des Sols, 10(4), 219–239.

  • Banin, A., Gerstl, Z., Fine, P., Metzger, Z., & Newrzella, D. (1990). Minimizing soil contamination through control of sludge transformations in soil. Joint German-Israel research projects report. N° Wt 8678/458.

  • Benzaazoua, M., Bussière, B., Dagenais, A.-M., & Archambault, M. (2004). Kinetic tests comparison and interpretation for prediction of the Joutel tailings acid generation potential. Environmental Geology, 46, 1086–1101.

    Article  CAS  Google Scholar 

  • Blaser, P., Zimmermann, S., Luster, J., & Shotyk, W. (2000). Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb, and Zn in Swiss forest soils. Science of the Total Environment, 249, 257–280.

    Article  CAS  Google Scholar 

  • Blowes, D. W. (1990). The geochemistry, hydrogeology and mineralogy of decommissioned sulfide tailings: a comparative study. Ph.D. Thesis, University of Waterloo.

  • Bo-feng, J., & Wei-ling, S. (2014). Assessment of heavy metal pollution in sediments from Xiangjiang River (China) using sequential extraction and lead isotope analysis. Journal of Central South University, 21, 2349–2358.

    Article  Google Scholar 

  • Bosmans, H., & Paenhuys, J. (1980). The distribution of heavy metals in the soil of the Kempen. Pédologie, 30(2), 191–223.

    CAS  Google Scholar 

  • Boulding, J. R. (1994). Description and sampling of contaminated soils: a field guide (2nd ed., ). Florida, USA:CRC Press.

    Google Scholar 

  • Boussen, S. (2010). Evolution des haldes plombo-zincifères dans le Nord de la Tunisie: l’exemple d’un contexte carbonaté. Thèse de Doctorat de l’Université de Tunis et de l’Université de Limoges.

  • Brookins, D. G. (1988). Eh-pH diagrams for geochemistry. New York:Springer-Verlag.

    Book  Google Scholar 

  • Brunauer, S., Emmett, P. H., & Teller, E. J. (1938). Adsorption moléculaire des gaz dans plusieurs couches. Journal of the American Chemical Society, 60, 309–319.

    Article  CAS  Google Scholar 

  • Buat-Menard, P., & Chesselet, R. (1979). Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth and Planetary Science Letters, 42, 399–411.

    Article  CAS  Google Scholar 

  • Bussière, B., Lelièvre, J., Ouellet, J., & Bois, D. (1994). Valorisation des résidus miniers: une approche intégrée. Rapports final soumis au Ministère des Ressources Naturelles dans le cadre du volet Mines Écologiques de l’Entente Auxiliaire du Développements Minéral.

  • Candeias, C., Ávila, P. F., Ferreira da Silva, E., Ferreira, A., Durães, N., & Teixeira, J. P. (2015). Water-rock interaction and geochemical processes in surface waters influenced by tailings impoundments: impact and threats to the ecosystems and human health in rural communities (Panasqueira Mine, Central Portugal). Water Air Soil Pollution In Press.

  • Cardoso Fonseca, E. (1982). Emploi de l’extraction chimique sélective séquentielle et détermination des phases-support du Pb et du Zn en milieux silico-alumineux lors de l’altération supergene du prospect de Sanguinheiro (SE Aveiro—Portugal). Comunicações dos Serviços Geológicos del, 68, 267–283.

    Google Scholar 

  • Cardoso Fonseca, E., & Ferreira da Silva, E. (1998). Application of selective extraction in metal-bearing phases identification: a South European case study. Journal of Geochemical Exploration, 6, 203–212.

    Article  Google Scholar 

  • Chakroun, H. K. (2012). Etude des rejets miniers et impact du transfert des métaux lourds vers le sol et la vegetation dans le district de jebel Halouf – Sidi Bouaouane. Thèse de Doctorat de l’Université de Tunis.

  • Chakroun, H. K., Souissi, F., Souissi, R., Bouchardon, J. L., Moutte, J., & Abdeljaoue, S. (2013). Heavy metals distribution and mobility in flotation tailings and agricultural soils near the abandoned Pb-Zn district of Jebel Hallouf-Sidi Bouaouane (NW Tunisia). Carpathian Journal of Earth and Environmental Sciences, 8(3), 249–263.

    Google Scholar 

  • Chaudri, A. M., McGrath, S. P., Giller, G. E., Rietz, E., & Sauerbeck, D. R. (1993). Enumeration of indigenous Rhizobium leguminosarum bio-var. trifolii in soil spiked with Cd, Zn, Cu and Ni salts. Soil Biology & Biochemistry, 24, 625–632.

    Article  Google Scholar 

  • Chen, H. S., Huang, Q. Y., Liu, L. N., Cai, P., Liang, W., & Li, M. (2010). Poultry manure compost alleviates the phytotoxicity of soil cadmium: influence on growth of pakchoi (Brassica chinensis L.). Pedosphere, 20, 63–70.

    Article  Google Scholar 

  • Chen, Y., Wang, C., & Wang, Z. (2005). Residues and source identification of persistent organic pollutants in farmland soils irrigated by effluents from biological treatment plants. Environment International, 31, 778–783.

    Article  CAS  Google Scholar 

  • Chopin, E. I. B., Black, S., Hodson, M. E., Coleman, M. L., & Alloway, B. J. (2003). A preliminary investigation into mining and smelting impacts on trace element concentrations in the soils and vegetation around Tharsis, SW Spain. Mineralogical Magazine, 67(2), 279–288.

    Article  CAS  Google Scholar 

  • Coynel, A., Schafer, J., Blanc, G., & Bossy, C. (2007). Scenario of particulate trace metal transport during a major flood event inferred from transient geochemical signals. Applied Geochemistry, 22, 821–836.

    Article  CAS  Google Scholar 

  • Dang, Z., Liu, C., & Haigh, M. J. (2002). Mobility of heavy metals associated with the natural weathering of coal mine spoils. Environmental Pollution, 118, 419–426.

    Article  CAS  Google Scholar 

  • DGM – Direction Générale des Mines (2005). Annuaire statistique, mines et dérivés. Ministère de l’industrie (1997–2005), Tunis.

  • Durães, N., Bobos, I., Ferreira da Silva, E., & Dekayir, A. (2015). Copper, zinc and lead biogeochemistry in aquatic and land plants from the Iberian Pyrite Belt (Portugal) and north of Morocco mining areas. Environmental Science and Pollution Research, 22, 2087–2105.

    Article  Google Scholar 

  • Durn, G., Miko, S., Covic, M., Barudzija, U., Tadej, N., Namjesnik-Dejanovic, K., & Palinkas, L. (1999). Distribution and behaviour of selected elements in soil developed over a historical Pb-Ag mining site at Sv. Jakob, Croatia. Journal of Geochemical Exploration, 67, 361–376.

    Article  CAS  Google Scholar 

  • Farkas, A., Erratico, C., & Vigano, L. (2007). Assessment of environmental significance of heavy metal pollution in surficial sediments of the River Po. Chemosphere, 68, 761–768.

    Article  CAS  Google Scholar 

  • Fernandez, C., Monna, F., Labanowski, J., Loubet, M., & van Oort, F. (2008). Anthropogenic lead distribution in soils under arable land and permanent grassland estimated by Pb isotopic compositions. Environmental Pollution, 156, 1083–1109.

    Article  CAS  Google Scholar 

  • Ferreira da Silva, E., Cardoso Fonseca, E., Matos, J. X., Patinha, C., Reis, P., & Santos Oliveira, M. (2005). The effect of unconfined mine tailings on the geochemistry of soils, sediments and surface waters of the Lousal area (Iberian Pyrite Belt, Southern Portugal). Land Degradation & Development, 16, 213–228.

    Article  Google Scholar 

  • Godin, P., Feinberg, M., & Ducauze, C. (1985). Modelling of soil contamination by airborne lead and cadmium around several emission sources. Environmental Pollution Series B, 10, 97–114.

    Article  CAS  Google Scholar 

  • Gómez-Ariza, J. L., Giradles, I., Sánchez-Rodas, D., & Morales, E. (2000). Metal sequential extraction procedure optimized for heavily polluted and iron oxide rich sediments. Analytica Chimica Acta, 414, 151–164.

    Article  Google Scholar 

  • Grosbois, A., Courtin-Nomade, F., Martin, & Bril, H. (2007). Transportation and evolution of trace element bearing phases in stream sediments in a mining-influenced basin (Upper Isle River, France). Applied Geochemistry, 22(11), 2362–2374.

    Article  CAS  Google Scholar 

  • Hall, G. E. M. (1998). Analytical perspective on trace element species of interest in exploration. Journal of Geochemical Exploration, 61, 1–19.

    Article  CAS  Google Scholar 

  • Hamzeh, M., Ouddane, B., Daye, M., & Halwani, J. (2014). Trace metal mobilization from surficial sediments of the Seine River estuary. Water, Air, and Soil Pollution, 225, 1878–1893.

    Article  Google Scholar 

  • Iavazzo, P., Adamo, P., Boni, M., Hillier, S., & Zampella, M. (2012a). Mineralogy and chemical forms of lead and zinc in abandoned mine wastes and soils: an example from Morocco. Journal of Geochemical Exploration, 113, 56–67.

    Article  CAS  Google Scholar 

  • Iavazzo, P., Ducci, D., Adamo, P., Trifuoggi, M., Migliozzi, A., & Boni, M. (2012b). Impact of past mining activity on the quality of water and soil in the High Moulouya Valley (Morocco). Water, Air, and Soil Pollution, 223, 573–589.

    Article  CAS  Google Scholar 

  • INM - Institut National de Meteorologie de Tunisie (2004). Archives des données de pluviométrie, température, évaporation, précipitation et vent de la région d’El Kef.

  • Jung, M. C., & Thornton, I. (1996). Heavy metal contamination of soils and plants in the vicinity of a lead-zinc mine, Korea. Applied Geochemistry, 11, 53–59.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants (2nd ed., ). Boca Raton, Florida:CRC Press, Inc..

    Google Scholar 

  • Kheboian, C., & Bauer, C. F. (1987). Accuracy of selective extraction procedures for metal speciation in model aquatic sediments. Analytical Chemistry, 59, 1417–1423.

    Article  CAS  Google Scholar 

  • Li, H. F., Gray, C., Mico, C., Zhao, F. J., & McGrath, S. P. (2009). Phytotoxicity and bioavailability of cobalt to plants in a range of soils. Chemosphere, 75, 979–986.

    Article  CAS  Google Scholar 

  • Li, X., & Thornton, I. (2001). Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Applied Geochemistry, 16, 1693–1706.

    Article  CAS  Google Scholar 

  • Lindsay, W. L. (1979). Chemical Equilibria in Soils. New York:John Wiley and Sons.

    Google Scholar 

  • Luo, X., Ding, J., Xu, B., Wang, Y., Li, H., & Yu, S. (2012). Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. Science of the Total Environment, 424, 88–96.

    Article  CAS  Google Scholar 

  • Meguellati N, Robbe D Marchandise P. and Astruc, M. (1983). Intérêt des minéralisations sélectives pour le suivi des pollutions métalliques associées aux sédiments. Journal Français d’Hydrologie, 13 Fasc. 32(39), 275–287.

    Google Scholar 

  • Merrington, G., & Alloway, B. J. (1994). The transfer and fate of Cd, Cu, Pb and Zn from two historic metalliferous mine sites in the U.K. Applied Geochemistry, 9, 677–687.

    Article  CAS  Google Scholar 

  • Mlayah, A., Ferreira da Silva, E., Rocha, F., Ben Hamza, C., Charef, A., & Noronha, F. (2009). The Oued Mellègue: mining activity, stream sediments and dispersion of base metals in natural environments, North-Western Tunisia. Journal of Geochemical Exploration, 102, 27–36.

    Article  CAS  Google Scholar 

  • Moreno, T., Oldroyd, A., McDonald, I., & Gibbons, W. (2007). preferential fractionation of trace metals–metalloids into PM10 resuspended from contaminated gold mine tailings at Rodalquilar, Spain. Water, Air, and Soil Pollution, 179, 93–105.

    Article  CAS  Google Scholar 

  • Mseddi, H., Mammou, A. B., & Oueslati, W. (2010). Methodology for the extraction of carbonate-bound trace metals from carbonate-rich soils: application to Lakhouat soils, Tunis, Tunisia. Chemical Speciation and Bioavailability, 22(3), 165–170.

    Article  CAS  Google Scholar 

  • Müller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geology Journal, 2, 109–118.

    Google Scholar 

  • Nabulo, G., Oryem-Origa, H., & Diamond, M. (2006). Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Ouganda. Environmental Research, 101, 42–52.

    Article  CAS  Google Scholar 

  • Navarro, M. C., Pérez-Sirvent, C., Martínez-Sánchez, M. J., Vidal, J., Tovar, P. J., & Bech, J. (2008). Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. Journal of Geochemical Exploration, 96, 183–193.

    Article  CAS  Google Scholar 

  • Nemati, K., Abu Bakar, N. K., Abas, M. R., & Sobhanzadeh, E. (2011). Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia. Journal of Hazardous Materials, 192, 402–410.

    CAS  Google Scholar 

  • Othmani, M. A., Souissi, F., Benzaazoua, M., Bussiere, B., Bouzahzah, H., & Abdelbaki, M. (2013). Study of the geochemical behaviour of the Touiref (NW Tunisia) Pb-Zn mine tailings using weathering cell leaching tests. Mine Water and the Environment, 32(1), 28–41.

    Article  CAS  Google Scholar 

  • Othmani, M. A., Souissi, F., Bouzahzah, H., Bussiere, B., Ferreira da Silva, E. F., & Benzaazoua, M. (2015). The flotation tailings of the former Pb-Zn mine of Touiref (NW Tunisia): mineralogy, mine drainage prediction, base-metal speciation assessment and geochemical modeling. Environmental Science and Pollution Research, 22(4), 2877–2890.

    Article  CAS  Google Scholar 

  • Pacyna, J. M., & Winchester, J. W. (1990). Contamination of the global environment as observed in the Arctic. Palaeogeography Palaeoclimatology Palaeoecology, 82, 149–157.

    Article  Google Scholar 

  • Pépin, G. (2009). Évaluation du comportement géochimique de stériles potentiellement générateurs de drainage neutre contaminé à l’aide de cellules expérimentales in situ, Université du Québec en Abitibi-Témiscamingue (UQAT). M.Sc.A.

  • Percival, J. B., Kwong, Y. T. J., Dumaresq, C. G., & Michel, F. A. (2004). Transport and attenuation of arsenic, cobalt and nickel in an alkaline environment (Cobalt, Ontario). Geological Survey of Canada, Open file, 1680.

  • Plante, B. (2010). Évaluation des principaux facteurs d’influence sur la prédiction du drainage neutre contaminé. Rouyn-Noranda Université du Québec en Abitibi-Témiscamingue (UQAT). PhD Thesis.

  • Ponette, Q., Ulrich, E., Brêthes, A., Bonneau, M., & Lanier, M. (1997). RENECOFOR - Chimie des sols dans les 102 peuplements du réseau, campagne de mesures 1993/95. Département des Recherches Techniques:Office National des Forêts.

    Google Scholar 

  • Querol, X., Alastuey, A., Lopez-Soler, A., & Plana, F. (2000). Levels and chemistry of atmospheric particulates induced by a spill of heavy metals mining wastes in the Donana area, southwest Spain. Atmospheric Environment, 34, 239–253.

    Article  CAS  Google Scholar 

  • Quevauviller, P., Lavigne, R., & Cortez, L. (1989). Impact of industrial and mine drainage wastes on the heavy metal distribution in the drainage basin and estuary of the Sado River (Portugal). Environmental Pollution, 59, 267–286.

    Article  CAS  Google Scholar 

  • Quevauviller, P., Rauret, G., Muntuau, H., Ure, A. M., Rubio, R., López-Sánchez, J. F., Fielder, H. D., & Griepink, B. (1994). Evaluation of sequential extraction procedure for the determination of extractable trace metal contents in sediments. Fresenius Journal of Analytical Chemistry, 349, 808–814.

    Article  CAS  Google Scholar 

  • Ramos Arroyo, Y. R., & Siebe, C. (2007). Weathering of sulphide minerals and trace element speciation in tailings of various ages in the Guanajuato mining district, Mexico. Catena, 71, 497–506.

    Article  CAS  Google Scholar 

  • Rapin, F., & Forstner, U. (1983). Sequential leaching techniques for particulate metal speciation: the selectivity of various extractants. In Proceedings of the 4th International Conference on Heavy Metals in the Environment, Heidelberg, Germany 2 (pp. 1074–1077).

    Google Scholar 

  • Razo, I., Carrizales, L., Castro, J., Diaz-Barriga, F., & Monroy, M. (2004). Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water, Air, and Soil Pollution, 152, 129–152.

    Article  CAS  Google Scholar 

  • Reimann, C., & de Caritat, P. (2005). Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors. Science of the Total Environment, 337, 91–107.

    Article  CAS  Google Scholar 

  • Reimann, C., Siewers, U., Tarvainen, T., Bityokova, L., Eriksson, J., & Gilucis, A. (2000). Baltic soil survey: total concentrations of major and selected elements in arable soils from 10 countries around the Baltic Sea. Science of the Total Environment, 257, 155–170.

    Article  CAS  Google Scholar 

  • Relić, D., Cordević, D., Popović, A., & Blagojević, T. (2005). Speciations of trace metals in the Danube alluvial sediments within an oil refinery. Environment International, 31, 661–669.

    Article  Google Scholar 

  • Rodríguez Martín, J. A., López Arias, M., & Grau Corbí, J. M. (2009). Metales pesados, materia orgánica y otros parámetros de los suelos agrícolas y de pastos de España. Madrid:Marminia.

    Google Scholar 

  • Rouvier, H. (1977). Géologie de l’éxtreme Nord Tunisien : tectoniques et paléogéographies superposées a léxtremité Orientale de la chaine Nord Maghrebine. In Thèse de Doctorate d’État, Paris. Marie Curie (Paris VI): Université Pierre et.

    Google Scholar 

  • Saeedi, H., Raad, S. P., Ardalan, A. A., Amrani, E., & Kiabi, B. H. (2009). Growth and reproduction of Solendactylus (Von Cosel, 1989) (Bivalvia: Solenidae) on northern coast of the Persian Gulf (Iran). Marine Biological Association of the United Kingdom, 89(8), 1635–1642.

    Article  Google Scholar 

  • Sainfeld, P. (1952). Les gîtes plombo-zincifères de la Tunisie. Tunis:Annales des Mines et Géologie.

    Google Scholar 

  • Salomons, W. (1995). Environmental impacts of metals derived from mining activities: processes, predictions, prevention. Journal of Geochemical Exploration, 52, 5–23.

    Article  CAS  Google Scholar 

  • Scharer, J. M., Pettit, C. M., Kirkaldy, J. L., Bolduc, L., Halbert, B. E., & Chambers, D. B. (2000). Leaching of metals sulphide mine wastes at neutral pH. 5th ICARD, Denver, Colorado, USA: Society for Mining, Metallurgy, Exploration, Inc., 191–204.

  • Schiff, K. C., & Weisberg, S. B. (1999). Iron as a reference element for determining trace metal enrichment in Southern California coastal shelf sediments. Marine Environmental Research, 48, 161–176.

    Article  CAS  Google Scholar 

  • Sebei, A. (2007). Impact des rejets miniers sur l’environnement. In Cas de basins versants des Oueds Mellègue et Tessa (Tunisie septentrionale). Thèse de: Doctorat de l’Université de Tunis El Manar.

    Google Scholar 

  • SERMI (1965). Inventaire géologique et minier: Etude géologique et minière de la zone de Touiref. Rapport interne.

  • Shevenell, L., Connors, K. A., & Henry, C. D. (1999). Controls on pit lake water quality at sixteen open-pit mines in Nevada. Applied Geochemistry, 14, 669–687.

    Article  CAS  Google Scholar 

  • Sidle, R. C., Chambers, J. C., & Amacher, M. C. (1991). Fate of heavy metals in an abandoned lead-zinc tailings pond II: Sediment. Journal of Environmental Quality, 20, 752–758.

    Article  CAS  Google Scholar 

  • Souissi, F., Souissi, R., Bouchardon, J. L., Moutte, J., Munoz, M., Chakroun, H. K., Othmani, M. A., & Ghorbel, M. (2008). Mineralogical and geochemical characterization of mine tailings and the effect of Pb, Zn, Cd and Cu mobility on the quality of soils and stream sediments in northern Tunisia (pp. 313–317). Hammamet, Tunisia. Book of Abstracts:International Congress of Solid Waste Management and Sustainable Development.

    Google Scholar 

  • Stantec Consulting Ltd (2004). Review of water quality issues in neutral pH drainage: examples and emerging priorities for the mining industry in Canada. Canada.:Rapport NEDEM 10.1 Natural Resources.

    Google Scholar 

  • Steinnes, E., Allen, R. O., Petersen, H. M., Ramaek, J. P., & Varskog, P. (1997). Evidence of large scale heavy-metal contamination of natural surface soils in Norway from long-range atmospheric transport. Science of the Total Environment, 205, 255–266.

    Article  CAS  Google Scholar 

  • Sundaray S. K., Nayak B. B., Lin S.,& Bhatta D. 2011. Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments—a case study: Mahanadi basin, India. Journal of Hazardous Materials, 186, 837–1846.

  • Sutherland, R., & Tack, F. (2007). Sequential extraction of lead from grain size fractionated river sediments using the optimized BCR procedure. Water, Air, & Soil Pollution, 184(1), 269–284.

    Article  CAS  Google Scholar 

  • Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39(6), 611–627.

    Article  CAS  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33, 241–265.

    Article  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Thornton, I. (1996). Impacted of mining on the environment; some local, regional and global issues. Applied Geochemistry, 11, 355–361.

    Article  CAS  Google Scholar 

  • Thuj, H. T. T., Tobschall, H. J., & An, P. V. (2000). Distribution of heavy metals in urban soils—a case study of Danang-Hoian area (Vietnam). Environmental Geology, 39, 603–610.

    Article  Google Scholar 

  • Violante, A., Cozzolino, V., Perelomov, L., Caporale, A. G., & Pigna, M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environments. Journal of Soil Science and Plant Nutrition, 10, 268–292.

    Article  Google Scholar 

  • Walker, D. J., Clemente, R., Roig, A., & Bernal, M. P. (2003). The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils. Environmental Pollution, 122, 303–312.

    Article  CAS  Google Scholar 

  • Wang, S. F., Jia, Y. F., Wang, S. Y., Wang, X., Wang, H., Zhao, Z. X., & Liu, B. (2010). Fractionation of heavy metals in shallow marine sediments from Jinzhou Bay, China. Journal of Environmental Sciences, 22(1), 23–31.

    Article  Google Scholar 

  • Wen-jiang, D., Li-cheng, Z., & Shen, Z. (1992). The research on the distribution and forms of heavy metals in the. Xiangjiang River sediments Journal Chinese Geographical Science, 2(1), 42–55.

    Article  Google Scholar 

  • Xiang, H. F., Tang, H. A., & Ying, Q. H. (1995). Transformation and distribution of forms of zinc in acid, neutral and calcareous soils of China. Geoderma, 66, 121–135.

    Article  CAS  Google Scholar 

  • Yobouet, Y. A., Adouby, K., Trokourey, A., & Yao, B. (2010). Cadmium, copper, lead and zinc speciation in contaminated soils. International Journal of Engineering, Science and Technology, 2(5), 802–812.

    Google Scholar 

  • Yusuf, K. A. (2007). Sequential extractions of lead, copper, cadmium, and zinc in soils near Ojota waste site. Journal of Agronomy, 6(2), 331–337.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I'd like to thank Mostafa Benzaazoua, Bruno Bussière, and Hassan Bouzahzah for their support in the flotation tailings analysis. I want also to thank Abbdelbaki Mansouri and Mohamed Jouirou from the National Office of Mines, Mohamed Ali Fedaoui and Fethi Ouerghi from the municipality of Touiref for their technical support. Our gratitude goes to the anonymous reviewers for their comments, which greatly improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Ali Othmani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Othmani, M.A., Souissi, F., Durães, N. et al. Assessment of metal pollution in a former mining area in the NW Tunisia: spatial distribution and fraction of Cd, Pb and Zn in soil. Environ Monit Assess 187, 523 (2015). https://doi.org/10.1007/s10661-015-4734-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4734-9

Keywords

Navigation