Skip to main content

Advertisement

Log in

Detection of hormones in surface and drinking water in Brazil by LC-ESI-MS/MS and ecotoxicological assessment with Daphnia magna

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The growing use of pharmaceutical drug is mainly due to several diseases in human and in animal husbandry. As these drugs are discharged into waterways via wastewater, they cause a major impact on the environment. Many of these drugs are hormones; in which even at low concentrations can alter metabolic and physiological functions in many organisms. Hormones were found in surface water, groundwater, soil, and sediment at concentrations from nanograms to milligrams per liter of volume—quantities known to cause changes in the endocrine system of aquatic organisms. This study aimed to develop a methodology for hormone detection (estriol, estrone, 17β-estradiol, 17α-ethinylestradiol, progesterone, and testosterone) on surface and treated water samples. Sample toxicity was assessed by ecotoxicology tests using Daphnia magna. A liquid chromatograph coupled to a mass spectrometer with an electrospray ionization source (LC-ESI-MS/MS) was used for the analysis. The results showed that samples were contaminated by the hormones estriol, estrone, progesterone, 17β-estradiol, and 17α-ethinylestradiol during the sampling period, and the highest concentrations measured were 90, 28, 26, 137, and 194 ng·L−1, respectively. This indicates the inflow of sewage containing these hormones at some points in the Piracicaba River in the State of Sao Paulo—Brazil. Results indicated little toxicity of the hormone estriol in D. magna, indicating that chronic studies with this microcrustacean are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Al Aukidy, M., Verlicchi, P., Jelic, A., Petrović, M., & Barceló, D. (2012). Monitoring release of pharmaceutical compounds: occurrence and environmental risk assessment of two WWTP effluents and their receiving bodies in the Po Valley, Italy. Science of the Total Environment, 438, 15–25.

    Article  Google Scholar 

  • Alda, M. J., & Barceló, D. (2001). Use of solid-phase extraction in various of its modalities for sample preparation in the determination of estrogens and progestogens in sediment and water. Journal of Chromatography A, 938(1–2), 145–153.

    Article  Google Scholar 

  • Arditsoglou, A., & Voutsa, D. (2010). Partitioning of endocrine disrupting compounds in inland waters and wastewaters discharged into the coastal area of Thessaloniki, Northern Greece. Environmental Science and Pollution Research International, 17(3), 529–538.

    Article  CAS  Google Scholar 

  • Barceló, D. (2007). Pharmaceutical-residue analysis. Trends in Analytical Chemistry, 26, 454–455.

    Article  Google Scholar 

  • Benotti, M. J., Trenholm, R. A., Vanderford, B. J., Holady, J. C., Stanford, B. D., & Snyder, S. A. (2009). Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environmental Science & Technology, 43(3), 597–603.

    Article  CAS  Google Scholar 

  • Brunchchen, L. M., Silva, P. S., Silveira, F. Z., Defaveri, T. M., Pich, C. T., & Geremias, R. (2013). Avaliação da toxicidade das águas do Rio Criciúma (Criciúma, Santa Catarina, Brasil), utilizando parâmetros físico-químicos e abordagens ecotoxicológicas. Ecotoxicology and Environmental Contamination, 8(2), 23–30.

    Article  Google Scholar 

  • Castro, F. J., dos Santos, D. R. A., Buongermino, C. R. P., Cortez, F. S., Pereira, C. D. S., Choeri, R. B., & Cesar, A. (2014). Ecotoxicological assessment of four pharmaceuticals compounds through acute toxicity tests. O Mundo da Saúde, 38(1), 51–55.

    Article  Google Scholar 

  • Céspedes, R., Lacorte, S., Raldúa, D., Ginebreda, A., Barceló, D., & Piña, B. (2005). Distribution of endocrine disruptors in the Llobregat River Basin (Catalonia, Ne Spain). Chemosphere, 61(11), 1710–1719.

    Article  Google Scholar 

  • Conley, J. M., Symes, S. J., Kindelberger, S. A., & Richards, S. M. (2008). Rapid liquid chromatography–tandem mass spectrometry method for the determination of a broad mixture of pharmaceuticals in surface water. Journal of Chromatography A, 1185(2), 206–215.

    Article  CAS  Google Scholar 

  • Diniz, M. S., Maurício, R., Petrović, M., Alda, M. J. L., Amaral, L., Peres, I., Barceló, D., & Santana, F. (2010). Assessing the estrogenic potency in a Portuguese wastewater treatment plant using an integrated approach. Journal of Environmental Science, 22(10), 1613–1622.

    Article  CAS  Google Scholar 

  • Farré, M., Pérez, S., Kantiani, L., & Barceló, D. (2008). Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. Trends in Analytical Chemistry, 27(11), 991–1007.

    Article  Google Scholar 

  • Fatta-Kassinos, D., Meric, S., & Nikolaou, A. (2011). Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Analytical and Bioanalytical Chemistry, 399, 251–275.

    Article  CAS  Google Scholar 

  • Garrison, A. W., Pope, J. D., & Allen, F. R. (1976). GC/MS analysis of organic compounds in domestic wastewaters. In C. H. Keith (Ed.), Identification and analysis of organic pollutants in water (pp. 517–536). Michigan: Ann Arbor Science Publishers.

    Google Scholar 

  • Ginebreda, A., Muñoz, I., Alda, M. J. L., Brix, R., López-Doval, J., & Barceló, D. (2010). Environmental risk assessment of pharmaceuticals in river: relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain). Environment International, 36(2), 153–162.

    Article  CAS  Google Scholar 

  • Goto, T., & Hiromi, J. (2003). Toxicity of 17α-ethynylestradiol and norethindrone, constituents of an oral contraceptive pill to the swimming and reproduction of cladoceran Daphnia magna, with special reference to their synergetic effect. Marine Pollution Bulletin, 47, 139–142.

    Article  CAS  Google Scholar 

  • Gros, M., Petrović, M., & Barceló, D. (2009). Tracing pharmaceutical residues of different therapeutic classes in environmental waters by using liquid chromatography/quadrupole linear ion trap mass spectrometry and automated library searching. Analytical Chemistry, 81(3), 898–912.

    Article  CAS  Google Scholar 

  • Gros, M., Petrović, M., Ginebreda, A., & Barceló, D. (2010). Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environment International, 36(1), 15–26.

    Article  CAS  Google Scholar 

  • Hamid, H., & Eskicioglu, C. (2012). Fate of estrogenic hormones in wastewater and sludge treatment: a review of properties and analytical detection techniques in sludge matrix. Water Research, 46(18), 5813–5833.

    Article  CAS  Google Scholar 

  • Hamilton, M. A., Russo, R. C., & Thurston, R. V. (1978). Method for estimating median lethal concentrations in toxicity bioassays. Environmental Science and Technology, 12(4), 417–1978.

    Article  Google Scholar 

  • Han, J., Qiu, W., Meng, S., & Gao, W. (2012). Removal of ethinylestradiol (EE2) from water via adsorption on aliphatic polyamides. Water Research, 46(17), 5715–5724.

    Article  CAS  Google Scholar 

  • Hernando, M. D., Mezcua, M., Fernandez-Alba, A. R., & Barceló, D. (2006). Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 69, 334–342.

    Article  CAS  Google Scholar 

  • Hignite, C., & Azarnoff, D. L. (1977). Drugs and drug metabolites as environmental contaminants: chlorophenoxy isobutyrate and salicylic acid in sewage water effluent. Life Sciences, 20(2), 337–342.

    Article  CAS  Google Scholar 

  • Hohenblum, P., Gans, O., Moche, W., Scharf, S., & Lorbeer, G. (2004). Monitoring of selected estrogenic hormones and industrial chemicals in groundwaters and surface waters in Austria. Science of the Total Environment, 333(1–3), 185–193.

    Article  CAS  Google Scholar 

  • Jaser, W., Severin, G. F., Jütting, U., Jüttner, I., Schramm, K. W., & Kettrup, A. (2003). Effects of 17α-ethynylestradiol on the reproduction of the cladoceran species Ceriodaphnia reticulate and Sida crystallina. Environment International, 28, 633–638.

    Article  CAS  Google Scholar 

  • Jiang, W., Yan, Y., Ma, M., Wang, D., Luo, Q., Wang, Z., & Satyanarayanan, S. K. (2012). Assessment of source water contamination by estrogenic disrupting compounds in China. Journal of Environmental Sciences, 24(2), 320–328.

    Article  CAS  Google Scholar 

  • Johnson, A. C., Belfroid, A., & Di Corcia, A. (2000). Estimating steroid oestrogen inputs into activated sludge treatment works and observations on their removal from the effluent. The Science of the Total Environment, 256, 163–173.

    Article  CAS  Google Scholar 

  • Jongh, C. M., Kooij, P. J. F., Voogt, P., & Laak, T. L. (2012). Screening and human health risk assessment of pharmaceuticals and their transformation products in Dutch surface waters and drinking water. Science of the Total Environment, 427–428, 70–77.

    Article  Google Scholar 

  • Kim, S. D., Cho, J., Kim, I. S., Vanderford, B. J., & Snyder, S. A. (2007). Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Research, 41(5), 1013–1021.

    Article  CAS  Google Scholar 

  • Köck-Schulmeyer, M., Ginebreda, A., Postigo, C., López-Serna, R., Pérez, S., Brix, R., Llorca, M., Alda, M. L., Petrović, M., Munné, A., Tirapu, L., & Barceló, D. (2011). Wastewater reuse in Mediterranean semi-arid areas: the impact of discharges of tertiary treated sewage on the load of polar micro pollutants in the Llobregat river (NE Spain). Chemosphere, 82(5), 670–678.

    Article  Google Scholar 

  • Kuch, H. M., & Ballschmiter, K. (2001). Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the pictogram per liter range. Environmental Science & Technology, 35(15), 3201–3206.

    Article  CAS  Google Scholar 

  • Kumar, A. K., Mohan, S. V., & Sarma, P. N. (2009). Sorptive removal of endocrine-disruptive compound (estriol, E3) from aqueous phase by batch and column studies: kinetic and mechanistic evaluation. Journal of Hazardous Materials, 164, 820–828.

    Article  CAS  Google Scholar 

  • Kümmerer, K. (2003). Significance of antibiotics in the environment. Journal of Antimicrobial Chemotherapy, 52, 5–7.

    Article  Google Scholar 

  • Kuster, M., Díaz-Cruz, S., Rossel, M., Alda, M. L., & Barceló, D. (2010). Fate of selected pesticides, estrogens, progestogens and volatile organic compounds during artificial aquifer recharge using surface waters. Chemosphere, 79(8), 880–886.

    Article  CAS  Google Scholar 

  • Lambert, W. (2004). Pitfalls in LC-MS (-MS) analysis. Analytica Conference, 71(2), 64.

    Google Scholar 

  • Lee, H.-B., Peart, T. E., & Svoboda, M. L. (2007a). Determination of ofloxacin, norfloxacin, and ciprofloxacin in sewage by selective solid-phase extraction, liquid chromatography with fluorescence detection, and liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 1139, 45–52.

    Article  CAS  Google Scholar 

  • Lee, H.–. B., Sarafin, K., & Peart, T. E. (2007b). Determination of β-blockers and β2-agonists in sewage by solid phase extraction and liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 1148, 158–167.

    Article  CAS  Google Scholar 

  • López-Serna, R., Pérez, S., Ginebreda, A., Petrović, M., & Barceló, D. (2010). Fully automated determination of 74 pharmaceuticals in environmental and waste by online solid phase extradition-liquid chromatography-electrospray-tandem mass spectrometry. Talanta, 83(2), 410–424.

    Article  Google Scholar 

  • Lu, G. H., Song, W. T., Wang, C., & Yan, Z. H. (2010). Assessment of in vivo estrogenic response and the identification of environmental estrogens in the Yangtze River (Nanjing section). Chemosphere, 80(9), 982–990.

    Article  CAS  Google Scholar 

  • Matuszewski, B. K., Constanzer, M. L., & Chavez-Eng, C. M. (2003). Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Analytical Chemistry, 75(13), 3019–3030.

    Article  CAS  Google Scholar 

  • OECD. (1998). Guideline for testing of chemicals. D. magna reproduction test. Paris. 21 p. (Guideline #211).

  • Peng, X., Tan, J., Tang, C., Yu, Y., & Wang, Z. (2008). Multiresidue determination of fluoroquinolone, sulfonamide, trimethoprim, and chloramphenicol antibiotics in urban waters in China. Environmental Toxicology and Chemistry, 27(1), 73–79.

    Article  CAS  Google Scholar 

  • Pereira, V. J., Galinha, J., Crespo, M. T. B., Matos, C. T., & Crespo, J. G. (2012). Integration of nanofiltration, UV photolysis, and advanced oxidation processes for the removal of hormones from surface water sources. Separation and Purification Technology, 95, 89–96.

    Article  CAS  Google Scholar 

  • Plotan, M., Frizzell, C., Robinson, V., Elliott, C. T., & Connolly, L. (2013). Endocrine disruptor activity in bottled mineral and flavoured water. Food Chemistry, 136(3–4), 1590–1596.

    Article  CAS  Google Scholar 

  • Ribeiro, C., Pardal, M. A., Martinho, F., Margalho, R., Tiritan, M. E., & Rocha, E. (2009). Distribution of endocrine disruptors in the Mondego River estuary, Portugal. Environmental Monitoring and Assessment, 149(1–4), 183–193.

    Article  CAS  Google Scholar 

  • Sirés, I., & Brillas, E. (2012). Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environment International, 40, 212–229.

    Article  Google Scholar 

  • Sodré, F. F., Pescara, I. C., Montagner, C. C., & Jardim, W. F. (2010). Assessing selected estrogens and xenoestrogens in Brazilian surface waters by liquid chromatography–tandem mass spectrometry. Microchemical Journal, 96(1), 92–98.

    Article  Google Scholar 

  • Spongberg, A. L., Witter, J. D., Acuña, J., Vargas, J., Murillo, M., Umaña, G., Gómez, E., & Perez, G. (2011). Reconnaissance of selected PPCP compounds in Costa Rican surface waters. Water Research, 45(20), 6709–6717.

    Article  CAS  Google Scholar 

  • Tabak, H. H., & Bunch, R. L. (1970). Steroid hormones as water pollutants. I. Metabolism of natural and synthetic ovulation-inhibiting hormones by microorganisms of activated sludge and primary settler sewage. Developments in Industrial Microbiology, 11, 367–376.

    Google Scholar 

  • Torres, N. H., Romanholo Ferreira, L. F., Américo, J. H. P., Freguglia, R. M. O., Moura-Andrade, G. C. R., & Tornisielo, V. L. (2012). Analysis and occurrence of residues of the hormones estriol, 17alpha-ethinylestradiol and 17beta-estradiol in urban water supply by HPLC-DAD. IOSRJEN Journal of Engineering, 2, 984–989.

    Article  Google Scholar 

  • Valcárcel, Y., Alonso, S. G., Rodríguez-Gil, J. L., Maroto, R. R., Gil, A., & Catalá, M. (2011). Analysis of the presence of cardiovascular and analgesic/anti-inflammatory/antipyretic pharmaceuticals in river- and drinking-water of the Madrid Region in Spain. Chemosphere, 82(7), 1062–1071.

    Article  Google Scholar 

  • Van De Steene, J. C., Mortier, K. A., & Lambert, W. E. (2006). Tackling matrix effects during development of a liquid chromatographic-electrospray ionisation tandem mass spectrometric analysis of nine basic pharmaceuticals in aqueous environmental samples. Journal of Chromatography A, 1123(1), 71–81.

    Article  Google Scholar 

  • Varga, R., Somogyvári, I., Eke, Z., & Torkos, K. (2011). Determination of antihypertensive and anti-ulcer agents from surface water with solid-phase extraction–liquid chromatography–electrospray ionization tandem mass spectrometry. Talanta, 83(5), 1447–1454.

    Article  CAS  Google Scholar 

  • Verlicchi, P., Al Aukidy, M., & Zambello, E. (2010). Hospital effluents as a source of emerging pollutants: an overview of micropollutants and sustainable treatment options. Science of the Total Environment, 389(3–4), 416–428.

    CAS  Google Scholar 

  • Wang, S., Huang, W., Fang, G., He, J., & Zhang, Y. (2008). On-line coupling of solid-phase extraction to high-performance liquid chromatography for determination of estrogens in environment. Analytica Chimica Acta, 606(2), 194–201.

    Article  CAS  Google Scholar 

  • Wang, C., Shi, H., Adams, C. D., Gamagedara, S., Stayton, I., Timmons, T., & Ma, Y. (2011). Investigation of pharmaceuticals in Missouri natural and drinking water using high performance liquid chromatography-tandem mass spectrometry. Water Research, 45(4), 1818–1828.

    Article  CAS  Google Scholar 

  • Wu, J., Qian, X., Yang, Z., & Zhang, L. (2010). Study on the matrix effect in the determination of selected pharmaceutical residues in seawater by solid-phase extraction and ultra-high-performance liquid chromatography–electrospray ionization low-energy collision-induced dissociation tandem mass spectrometry. Journal of Chromatography A, 1217(9), 1471–1475.

    Article  CAS  Google Scholar 

  • Xiao, Y., Chang, H., Jia, A., & Hu, J. Y. (2008). Trace analysis of quinolone and fluoroquinolone antibiotics from wastewaters by liquid chromatography–electrospray tandem mass spectrometry. Journal of Chromatography A, 1214(1–2), 100–108.

    Article  CAS  Google Scholar 

  • Zhao, X. M., & Metcalfe, C. D. (2008). Characterizing and compensating for matrix effects using atmospheric pressure chemical ionization liquid chromatography–tandem mass spectrometry: analysis of neutral pharmaceuticals in municipal wastewater. Analytical Chemistry, 80, 2010–2017.

    Article  CAS  Google Scholar 

  • Zucker, E. (1985). Hazard Evaluation Division. Standard evaluation procedure: acute toxicity test for freshwater fish. Washington, DC: USEPA. (EPA 540/9-85-006).

Download references

Acknowledgments

We would like to thank CAPES (Coordination of Improvement of Higher Education Personnel), CNPq (National Counsel of Technological and Scientific Development), and Fapesp (Foundation for Research Support of São Paulo State) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nádia Hortense Torres.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, N.H., Aguiar, M.M., Ferreira, L.F.R. et al. Detection of hormones in surface and drinking water in Brazil by LC-ESI-MS/MS and ecotoxicological assessment with Daphnia magna . Environ Monit Assess 187, 379 (2015). https://doi.org/10.1007/s10661-015-4626-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4626-z

Keywords

Navigation