Skip to main content
Log in

Fractionation of heavy metals in bottom sediments in Chahnimeh 1, Zabol, Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In the present study, 180 sediment samples were collected from the Chahnimeh 1 reservoir to investigate the concentration of metal and sequential extraction. Five geochemical phases (exchangeable fraction, carbonate fraction, Fe/Mn oxide fraction, organic fraction and residual fraction) for the determination of the speciation of heavy metals (Zn, Fe, Cd, Pb, Mn, Ni) as proposed by Tessier was applied to sediments collected from Chahnimeh1. Results were obtained for nickel and cadmium, as over 40 % of metal was present in the exchangeable phase and bound to carbonate. According to the risk assessment code (RAC), sediments that have 31 to 50 % carbonate and exchangeable fraction are high risk. Similar results were obtained for zinc and lead. The major fraction of the two metals (63 % of the total concentration for lead and 85 % of the total concentration for zinc) occurred in the residual phase and fraction-bound hydrous Fe-Mn oxides. The risk assessment showed moderate risk for lead and no risk for zinc. This indicates that the Igeo and IPOLL used in the present investigation showed no pollution to moderate pollution in terms of metals in sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdolmaleki, A. S., Ahangar, A. G., and Soltani, J. (2013). Artificial Neural Network (ANN) approach for predicting Cu concentration in drinking water of Chahnimeh1 Reservoir in Sistan-Balochistan, Iran. Health scope.

  • Ardalan, A. A., Khoshkhoo, Z., Rabbani, M., & Moini, S. (2007). Comparative study for heavy metal concentration (Zn, Cu, Pb, Cd And Hg) in water, sediments and soft tissue of Anzali lagoon Anodont (Anodonta Cygnea) sampled in two seasons, autumn and spring (2004–2005). Pajouhesh and Sazandegi, 19, 103–13.

    Google Scholar 

  • Block, D. Z. R. (1994). Studies of the availability of toxic heavy metal elements in soil and sediments in the vicinity of lead smelting site (Germany). Water, Air, and Soil Pollution, 78, 317–334.

    Article  Google Scholar 

  • Boughriet, A., Ouddanc, B., Fischerj, C., Wartel, M., & Leman, G. (1992). Variability of dissolved Mn and Zn in the Seine Estuary and chemical speciation of these metals in suspended matter. Water Research, 26, 1359–1378.

    Article  CAS  Google Scholar 

  • Chai, M., Shi, F., Li, R., & Shen, X. (2014). Heavy metal contamination and ecological risk in Spartina alterniflora marsh in intertidal sediments of Bohai Bay, China. Marin e Pollut ion Bullet in, 84, 115–124.

    Article  CAS  Google Scholar 

  • Charkhabi, A., Shokrizadeh, M., & Rafiee, G. (2005). Seasonal fluctuation in heavy metal pollution in Iran’s Siahroud River. A preliminary study. Environmental Science and Pollution Reaserch, 12, 264–70.

    Article  CAS  Google Scholar 

  • Das, A., Chakrabrty, R., Cervera, M., & Guardia, D. (1995). Metal speciation in soil matrices. Talanta, 42, 1007–1030.

    Article  CAS  Google Scholar 

  • Filgueiras, A., Lavilla, I., & Bendicho, C. (2002). Chemical sequential extraction for metal partitioning in environmental solid samples. JEM tutorial rewiew.

  • Forstner, U. (1989). Contaminated sediment. In S. Bhattacharij et al. (Eds.), Lecture notes in earth sciences (pp. 1–157). Berlin: Springer.

    Google Scholar 

  • Gismera, M., Lacal, J., Dasilva, P., Garcia, R., & Serilla, M. (2004). Study of heavy metal fraction in river sediment, a comparison between kinetic and sequential extraction procedures. Environmental Pollution, 127, 175–182.

    Article  CAS  Google Scholar 

  • Głosińska, G., Sobczyński, T., Boszke, L., Bierła, K., & Siepak, J. (2005). Fractionation of some heavy metals in bottom sediments from the middle Odra River (Germany/Poland). Polish Journal of Environmental Studies, 14, 305–317.

    Google Scholar 

  • Harrison, R. M., Laxen, D. H., & Welson, S. J. (1981). Chemical association of lead, cadmium, copper, and zinc in street dusts and roadside soils. Environmental Science and Technology, 15, 1378–1389.

    Article  CAS  Google Scholar 

  • Hickey, M. G., & Kittrick, M. G. (1984). Chemical partitioning of cadmium, copper, nickel, and zinc in soils and sediments containing high levels of heavy metals. Journal of Environmental Quality, 13, 372–376.

    Article  CAS  Google Scholar 

  • Honglei, L., Liqing, L., Chengqing, Y., & Baoqing, S. (2008). Fraction distribution and risk assessment of heavy metals in sediments of Moshui Lake. Journal of Environmental Sciences, 20, 390–397.

    Article  Google Scholar 

  • Howard, J., & Vandenbrink, W. (1999). Sequential extraction analysis of heavy metals in sediments of variable composition using nitrilotriacetic acid to counteract resorption. Environmental Pollution, 106, 285–292.

    Article  CAS  Google Scholar 

  • Jaradat, Q. M. (2002). Speciation and composition of indoor dust. Journal of Saudi Chemical Society, 6, 26–70.

    Google Scholar 

  • Jaradat, Q. M., Massadeh, A. M., Zaitoun, M. A., & Maitah, B. M. (2006). Fractionation and sequential extraction of heavy metals in the soil of scrapyard of discarded vehicles. Environmental Monitoring and Assessment, 112, 197–210.

    Article  CAS  Google Scholar 

  • Jeana, V., Gupta, S., Dhundhel, R. S., Matica, N., Franciskovic, S., & Device, N. (2013). Determination of total heavy metal by sequential extraction from soil. International Journal of Research in Environmental Science and Technology, 35, 35–38.

    Google Scholar 

  • Karbassi, A. R., Saeedi, M., & Amirnejad, R. (2008). Historical changes of heavy metals content and sequential extraction in a sediment core from the Gorgan Bay, Southern Caspian Sea. Iranian Journal of Marine Sciences, 37, 267–272.

    CAS  Google Scholar 

  • Kelepertsis, A., Alexakis, D., & Kita, I. (2001). Environmental geochemistry of soils and waters of Susaki Area, Korinthos, Greece. Environmental Geochemistry and Health, 23, 117–135.

    Article  CAS  Google Scholar 

  • Klavins, M., Briede, A., Rodinov, B., Kokorite, I., Parele, E., & Kalavina, I. (2000). Heavy metals in rivers of Latvia. Science of the Total Environment, 262, 175–83.

    Article  CAS  Google Scholar 

  • Krishnamurti, G., Hung, P., & Rees, K. J. V. (1995). Speciation of particulate-bound Cadmium of soils and its bioavailability. Analyst, 120, 659–665.

    Article  CAS  Google Scholar 

  • Krupadam, R., Smita, P., & Wate, S. (2006). Geochemical of heavy metals in sediments of Tapi estuary. Geochemical Journal, 40, 513–522.

    Article  CAS  Google Scholar 

  • Kunwar, P., Mohan, D., Singh, V. K., & Malik, A. (2005). Studies on distribution and fractionation of heavy metals in Gomti river sediments—a tributary of the Ganges, India. Journal of Hydrology, 312, 14–27.

    Article  Google Scholar 

  • Kuo, S., Heilman, P. E., & Baker, A. S. (1983). Distribution and forms of copper, zinc, cadmium, iron and manganese in soil near a copper smelter. Soil Science, 2, 101–109.

    Article  Google Scholar 

  • Li, X., & Thornton, L. (2001). Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Applied Geochemistry, 16, 1693–1706.

    Article  CAS  Google Scholar 

  • Li, X., Poon, C., & Liu, P. (2001). Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied Geochemistry, 16, 1361–1368.

    Article  CAS  Google Scholar 

  • Lien, H., Leermakers, M., Elskens, M., Ridder, F. D., Doan, T. H., & Baeyens, W. (2005). Correlations, partitioning and bioaccumulation of heavy metals between different compartments of Lake Balaton. Science of the Total Environment, 341, 211–226.

    Article  Google Scholar 

  • Lu, A., Shuzhen, Z., & Xiao-Quan, S. (2005). Time effect on the fractionation of heavy metals in soils. Geoderma, 125, 225–234.

    Article  CAS  Google Scholar 

  • Macdonald, D. D., Berge, T. A., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20–31. doi:10.1007/sOM440010075.

    Article  CAS  Google Scholar 

  • Maiz, I., Arambarri, I., Garcia, R., & Millan, E. (2000). Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis. Environmental Pollution, 110, 3–9.

    Article  CAS  Google Scholar 

  • Mollazadeh, N., Moattar, F., Karbassi, A. R., & Khorasani, N. (2013). Distribution of metals, chemical partitioning, pollution and origins in riverbed sediment. World Applied Sciences Journal, 21, 674–680.

    CAS  Google Scholar 

  • Morillo, J., Usero, J., & Gracia, I. (2012). Partitioning of metals in sediments from the Odiel River (Spain). Environmental International, 28, 263–271.

    Article  Google Scholar 

  • Muller, V. (1969). Geochemical index for pollution assessment in aquatic environment. N.Y.: Springer.

    Google Scholar 

  • Nemati, K., Bakar, N. K. A., Abas, M. R., & Sobhanzadeh, E. (2011). Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia. Journal of Hazardous Materials, 402–410.

  • Page, A., Miller, R., & Kenny, D. (1982). Method of soil analysis. Part 2: chemical and microbiological properties. American society of Agronomy. Soil Sience Society of American. Wisconsin, USA. 1159.

  • Pagnanelli, F., Moscardini, E., Giuliano, V., & Toro, L. (2004). Sequential extraction of heavy metals in river sediments of an abandoned pyrite mining area: pollution detection and affinity series. Environmental Pollution, 132, 189–201.

    Article  CAS  Google Scholar 

  • Pardo, R., Barrado, E., Perez, L., & Vega, M. (1990). Determination and speciation of heavy metal in sediments of the Pisuerga river. Water Research, 24, 337–343.

    Article  Google Scholar 

  • Parvaresh, H., Abedi, Z., Farshchi, P., Karami, M., Khorasani, N., & Karbassi, A. R. (2011). Bioavailability and concentration of heavy metals in the sediments and leaves of grey mangrove, Avicennia marina (Forsk.) Vierh, in Sirik Azini Creek, Iran. Biological Trace Element Research, 143, 1121–1130.

    Article  CAS  Google Scholar 

  • Peng, J.-F., Song, Y.-H., Yuan, P., Cui, X.-Y., & Qiu, G.-L. (2009). The remediation of heavy metals contaminated sediment. Journal of Hazardous Materials, 161, 633–640.

    Article  CAS  Google Scholar 

  • Perin, G., Craboledda, L., Lucchese, M., Cirillo, R., Dotta, L., & Zanetta, M. (1985). Heavy metal speciation in the sediments of northern Adriatic Sea. A new approach for environmental toxicity determination. Heavy Metals in the Environ- ment (Lakkas T D, ed). CEP Consultants Edinburg.

  • Peterson, W., Wallmann, K., Schroers, S., & Schroedr, F. (1993). Studies on the adsorption of cadmium hydrous iron oxides in oxic sediments. Anatica Chimica Acta, 273, 323–327.

    Article  Google Scholar 

  • Ranjbar, G. A. (1997). Heavy metal concentration in surficial sediments from Anzali Wetland, Iran. Water, Air, andSoil Pollution, 104, 305–12.

    Article  Google Scholar 

  • Rouret, R. (1998). Extraction procedures for the determination of heavy metals in contamination soil and sediment. Talanta, 46, 449–455.

    Article  Google Scholar 

  • Saeedi, M., & Karbassi, A. R. (2006). Heavy metals pollution and speciation in sediments of southern part of the Caspian Sea. Pakistan Journal of Biological Sciences, 9, 735–740.

    Article  CAS  Google Scholar 

  • Salehi, F., Abdoli, M. A., & Baghdadi, M. (2014). Sources of Cu, V, Cd, Cr, Mn, Zn, Co, Ni, Pb, Ca and Fe in Soil of Aradkooh Landfill. International Journal of Environmental Research, 8, 543–550.

    CAS  Google Scholar 

  • Schramel, O., Michalke, B., & Kettrup, A. (2000). Study of the copper distribution in contamination soils of hop field by signal and sequential extraction procedure. Science of the Total Environment, 263, 11–22.

    Article  CAS  Google Scholar 

  • Sekhar, K. C., Chary, K., Kamala, C., Raj, D. S., & Rao, A. S. (2003). Fractionation studies and bioaccumulation of sediment-bound heavy metals in Kolleru lake by edible fish. Environment International, 29, 1001–1008.

    Article  Google Scholar 

  • Shokrzadehab, M., & Saravi, S. S. S. (2010). The study of heavy metals (zinc, lead, cadmium, and chromium) in sediments sampled from Gorgan coast (Iran), spring 2008. Toxicological & Environmental Chemistry, 92, 67–69.

    Article  Google Scholar 

  • Sinex, S. A., & Helz, G. R. (1981). Regional geochemistry of trace elements in Chesapeake Bay sediments. Environmental Geology, 315–323.

  • Sutherland, R. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39, 611–627.

    Article  CAS  Google Scholar 

  • Tabari, S., Saeedi, S., Bandani, G., Dehghan, A., & Shokrzadeh, M. (2014). Heavy metals (Zn, Pb, Cd and Cr) in fish, water and sediments sampled from Southern Caspian Sea, Iran. Toxicology and Industrial Health, 30, 64–72.

    Article  Google Scholar 

  • Tessier, A., & Campbell, P. G. C. (1987). Partitioning of trace metals in sediments: relationships with bioavailability. Hydrobiologia, 149, 43e52.

    Article  Google Scholar 

  • Tessier, A., Campbell, P. A., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particular trace metal. Analytical Chemistry, 51, 844–850.

    Article  CAS  Google Scholar 

  • Tokalioglu, S., Kartal, S., & Elçi, L. (2000). Determination of heavy metals and their speciation in lake sediments by flame atomic absorption spectrometry after a four-stage sequential extraction procedure. Analytica Chimica Acta, 413, 33–40.

    Article  CAS  Google Scholar 

  • Ure, A. M., Quevauviller, P. J., Munta, H., & Griepink, B. (1993). Speciation of heavy metals in soils and sediments: an account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the emission of the European communities. International Journal of Environmental Analytical Chemistry, 51, 135–511.

    Article  CAS  Google Scholar 

  • Vekerdy, Z., Lakatos, L., Balla, G., & Oroszlan, G. (2006). An international replication, and the need for long term follow up studies. Arch Dis Child Fetal Neonatal Ed, 91.

  • Wang, S., Jia, Y., Wang, S., Wang, X., Wang, H., Zhao, Z., & Liu, B. (2010). Fractionation of heavy metals in shallow marine sediments from Jinzhou Bay, China. Journal of Environmental Sciences, 29, 23–31.

    Article  Google Scholar 

  • Xiao, R., Bai, J., Gao, H., Huang, L., Huang, C., & Liu, P. (2012). Heavy metals (Cr and Ni) distribution and fractionation in cropland soils from reclaimed tidal wetlands in Pearl River estuary, South China. Procedia Environmental Sciences, 13, 1684–1687.

    Article  CAS  Google Scholar 

  • Yang, Y., Chen, F., Zhang, L., Liu, J., Wua, S., & Kang, M. (2012). Comprehensive assessment of heavy metal contamination in sediment of the Pearl River Estuary and adjacent shelf. Marine Pollution Bulletin, 64, 1947–1955.

    Article  CAS  Google Scholar 

  • Yuan, C.-G., Shi, J.-B., He, B., Liu, J.-F., Liang, L.-N., & JIANG, G.-B. (2004). Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environment International, 30, 769–783.

    Article  CAS  Google Scholar 

  • Zemberyova, M., Zwaik, A., & Farkasovska, I. (1998). Sequential extraction for the speciation of some heavy metals in soils. Journal of Radioanalaytical and Nuclear Chemistry, 229, 67–71.

    Article  CAS  Google Scholar 

  • Zemberyova, M., Bartekov, J., & Hagarov, I. (2006). The utilization of modified BCR three-step sequential extraction procedure for the fractionation of Cd, Cr, Cu, Ni, Pb and Zn in soil reference materials of different origins. Talanta, 70, 973–978.

    Article  CAS  Google Scholar 

Download references

Conflict of interest

The current research is an academic study, and all expenses have been self-financed. No conflict of interest exists for any of the authors involved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Hessam Hassani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javan, S., Hassani, A.H., Ahangar, A.G. et al. Fractionation of heavy metals in bottom sediments in Chahnimeh 1, Zabol, Iran. Environ Monit Assess 187, 340 (2015). https://doi.org/10.1007/s10661-015-4510-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4510-x

Keywords

Navigation