Skip to main content

Advertisement

Log in

Adaptive policy responses to water shortage mitigation in the arid regions—a systematic approach based on eDPSIR, DEMATEL, and MCDA

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Most of the arid and semi-arid regions are located in the developing countries, while the availability of water in adequate quantity and quality is an essential condition to approach sustainable development. In this research, “enhanced Driving force-Pressure-State-Impact-Response (eDPSIR)” sustainability framework was applied to deal with water shortage in Yazd, an arid province of Iran. Then, the Decision Making Trial and Evaluation Laboratory (DEMATEL) technique was integrated into the driven components of eDPSIR, to quantify the inter-linkages among fundamental anthropogenic indicators (i.e. causes and effects). The paper’s structure included: (1) identifying the indicators of DPSIR along with structuring eDPSIR causal networks, (2) using the DEMATEL technique to evaluate the inter-relationships among the causes and effects along with determining the key indicators, (3) decomposing the problem into a system of hierarchies, (4) employing the analytic hierarchy process (AHP) technique to evaluate the weight of each criterion, and (5) applying complex proportional assessment with Grey interval numbers (COPRAS-G) method to obtain the most conclusive adaptive policy response. The systematic quantitative analysis of causes and effects revealed that the root sources of water shortage in the study area were the weak enforcement of law and regulations, decline of available freshwater resources for development, and desertification consequences. According to the results, mitigating the water shortage in Yazd could be feasible by implementation of such key adaptive policy-responses as providing effective law enforcement, updating the standards and regulations, providing social learning, and boosting stakeholders’ collaboration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbaspour, M., Mirbagheri, S. A., Monavvari, M., Javid, A. H., & Zarei, H. (2009). Conceptual hydrosalinity model for prediction of salt load from wastewater flows into soil and ground water. International Journal of Environmental Sciences and Technology, 6(3), 359–368.

    Article  CAS  Google Scholar 

  • Aghdaie, M. H., Hashemkhani-Zolfani, S., & Zavadskas, E. K. (2012). Prioritizing constructing projects of municipalities based on AHP and COPRAS-G; a case study about constructing of footbridges in Iran. Baltic Journal of Road and Bridge Engineering, 7(2), 145–153.

    Article  Google Scholar 

  • Alexakis, D., Kagalou, I., & Tsakiris, G. (2013). Assessment of pressures and impacts on surface water bodies of the Mediterranean. Case study: Pamvotis Lake. Greece Environmental Earth Sciences, 70(2), 687–698.

    Article  CAS  Google Scholar 

  • Ashraf, B., Yazdani, R., Mousavi-Baygi, M., & Bannayan, M. (2013). Investigation of temporal and spatial climate variability and aridity of Iran. Theoretical and Applied Climatology. doi:10.1007/s00704-013-1040-8.

    Google Scholar 

  • Atkins, J. P., Burdon, D., Elliott, M., & Gregory, A. J. (2011). Management of the marine environment: integrating ecosystem services and societal benefits with the DPSIR framework in a systems approach. Marine Pollution Bulletin, 62, 215–226.

    Article  CAS  Google Scholar 

  • Bannayan, M., Sanjani, S., Alizadeh, A., Sadeghi-Lotfabadi, S., & Mohamadian, A. (2010). Association between climate indices, aridity index, and rainfed crop yield in northeast of Iran. Field Crop Research, 118, 105–114.

    Article  Google Scholar 

  • Binimelis, R., Monterroso, I., & Rodríguez-Labajos, B. (2009). Catalan agriculture and genetically modified organisms (GMOs)—an application of DPSIR model. Ecological Economics, 69, 55–62.

    Article  Google Scholar 

  • Biswas, A. K. (1991). Water for sustainable development in the 21st century: a global perspective. GeoJournal, 24(4), 341–345.

    Article  Google Scholar 

  • Biswas, S., Vacik, H., Swanson, M. E., & Haque, S. M. (2011). Evaluating integrated watershed management using multiple criteria analysis—a case study at Chittagong Hill Tracts in Bangladesh. Environmental Monitoring and Assessment, 184(5), 2741–2761.

    Article  Google Scholar 

  • Chen, C. A. (2012). Using DEMATEL method for medical tourism development in Taiwan. American Journal of Tourism Research, 1(1), 26–32.

    Google Scholar 

  • Chen, Y. C., Lien, H. P., & Tzeng, G. H. (2010). Measures and evaluation for environment watershed plans using a novel hybrid MCDM model. Expert Systems with Applications, 37(2), 926–938.

    Article  Google Scholar 

  • Choi, S. J., Kim, J. H., & Lee, D. R. (2012). Decision of the water shortage mitigation policy using multi-criteria decision analysis. KSCE Journal of Civil Engineering, 16(2), 247–253.

    Article  Google Scholar 

  • Dalalah, D., Hayajneh, M., & Batieha, F. (2011). A fuzzy multi-criteria decision making model for supplier selection. Expert Systems with Applications, 38, 8384–8391.

    Article  Google Scholar 

  • Deng, J. L. (1982). Control problems of grey systems. Systems and Control Letters, 1(5), 288–294.

    Article  Google Scholar 

  • Deng, J. (1989). Introduction to Grey system theory. Journal of Grey System, 1, 1–24.

    Google Scholar 

  • EEA (European Environment Agency). (1999). Environmental indicators: typology and overview. Unpublished Technical Report, No. 25. European Environment Agency, Copenhagen.

  • Elliott, M. (2013). The 10-tenets for integrated, successful and sustainable marine management. Marine Pollution Bulletin, 74, 1–5.

    Article  CAS  Google Scholar 

  • Figueira, J., Greco, S., & Ehrgott, M. (2005). Multicriteria decision analysis: state of the art surveys. New York: Springer.

    Book  Google Scholar 

  • Gabus, A., & Fontela, E. (1972). World problems, and invitation to further thought within the framework of DEMATEL. Geneva: Battelle Geneva Research Centre.

    Google Scholar 

  • Hashemkhani-Zolfani, S., Rezaeiniya, N., Zavadskas, E. K., & Turskis, Z. (2011). Forest roads locating based on AHP-COPRAS-G methods—an empirical study based on Iran. E and M Ekonomie a Management, 14(4), 6–21.

    Google Scholar 

  • Huang, H. F., Kuo, J., & Lo, S. L. (2011). Review of PSR framework and development of a DPSIR model to assess greenhouse effect in Taiwan. Environmental Monitoring and Assessment, 177, 623–635.

    Article  Google Scholar 

  • Hurlbert, M. A., & Diaz, H. (2013). Water governance in Chile and Canada: a comparison of adaptive characteristics. Ecology and Society. doi:10.5751/ES-06148-180461.

    Google Scholar 

  • Jago-ona, K. A. B., Kaneko, S., Fujikura, R., Fujiwara, A., Imai, T., Matsumoto, T., Zhang, J. Y., Tanikawa, H., Tanaka, K., Lee, B., & Taniguchi, M. (2009). Urbanization and subsurface environmental issues: an attempt at DPSIR model application in Asian cities. Science of the Total Environment, 407, 3089–3104.

    Article  Google Scholar 

  • Jaiswal, R. K., Thomas, T., Galkate, R. V., Ghosh, N. C., & Singh, S. (2014). Watershed prioritization using Saaty’s AHP based decision support for soil conservation measures. Water Resources Management, 28(2), 475–494.

    Article  Google Scholar 

  • Juran, J. M. (2004). Juran, quality, and a century of development, the Non-Pareto principle; Mea Culpa. American society for quality. USA: American Society for Quality, Quality Press.

    Google Scholar 

  • Kundzewicz, Z. W. (1997). Water resources for sustainable development. Hydrological Sciences Journal, 42(4), 467–480.

    Article  Google Scholar 

  • Kurniati, E., Sutanhaji, A. T., & Anggraini, O. A. (2013). Land acquisition and resettlement action plan (LARAP) of Dam Project using Analytical Hierarchical Process (AHP): a case study in Mujur Dam, Lombok Tengah District-West Nusa Tenggara, Indonesia. Procedia Environmental Sciences, 17, 418–423.

    Article  Google Scholar 

  • Liou, J. J. H., Tzeng, G. H., & Chang, H. C. (2007). Airline safety measurement using a hybrid model. Journal of Air Transport Management, 13(4), 243–249.

    Article  Google Scholar 

  • Liwenga, E. T. (2008). Adaptive livelihood strategies for coping with water scarcity in the drylands of central Tanzania. Physics and Chemistry of the Earth, 33(8–13), 775–779.

    Article  Google Scholar 

  • Lynch, A. J. J. (2011). The usefulness of a threat and disturbance categorization developed for Queensland wetlands to environmental management, monitoring, and evaluation. Environmental Management, 47, 40–55.

    Article  CAS  Google Scholar 

  • Mahmoud, M., & Garcia, L. (2000). Comparison of different multicriteria evaluation methods for the Red Bluff diversion dam. Environmental Modelling & Software, 15(5), 471–478.

    Article  Google Scholar 

  • Mays, L.W. (2007). Water resources sustainability. McGraw-Hill Professional, p 330.

  • Mostafaeipour, A. (2010). Historical background, productivity and technical issues of qanats. Water History, 2, 61–80.

    Article  Google Scholar 

  • Mutikanga, H. E., Sharma, S. K., & Vairavamoorthy, K. (2011). Multi-criteria decision analysis: a strategic planning tool for water loss management. Water Resources Management, 25(4), 3947–3969.

    Article  Google Scholar 

  • Mysiak, J., Giupponi, C., & Rosato, P. (2005). Towards the development of a decision support system for water resource management. Environmental Modelling & Software, 20(2), 203–214.

    Article  Google Scholar 

  • Nasiri, H., Darvishi-Boloorani, A., Faraji-Sabokbar, H. A., Jafari, H. R., Hamzeh, M., & Rafii, Y. (2013). Determining the most suitable areas for artificial groundwater recharge via an integrated PROMETHEE II-AHP method in GIS environment (case study: Garabaygan Basin, Iran). Environmental Monitoring and Assessment, 185(1), 707–718.

    Article  Google Scholar 

  • Ness, B., Anderberg, S., & Olsson, L. (2010). Structuring problems in sustainability science: the multi-level DPSIR framework. Geoforum, 41, 479–488.

    Article  Google Scholar 

  • Niemeijer, D., & de Groot, R. S. (2008a). A conceptual framework for selecting environmental indicator sets. Ecological Indicators, 8, 14–25.

    Article  Google Scholar 

  • Niemeijer, D., & de Groot, R. S. (2008b). Framing environmental indicators: moving from causal chains to causal networks. Environment, Development and Sustainability, 10(1), 89–106.

    Article  Google Scholar 

  • Pareto, V. (1909). Manuale d’Economia Politica. English translation, Kelly AM, 1971.

  • Pinto, R., de Jonge, V. N., Neto, J. M., Domingos, T., Marques, J. C., & Patrício, J. (2013). Towards a DPSIR driven integration of ecological value, water uses and ecosystem services for estuarine systems. Ocean and Coastal Management, 72, 64–79.

    Article  Google Scholar 

  • Quaddus, M. A., & Siddique, M. A. B. (2001). Modelling sustainable development planning: a multi-criteria decision conferencing approach. Environment International, 27, 89–95.

    Article  CAS  Google Scholar 

  • Ren, J., Manzardo, A., Toniolo, S., & Scipioni, A. (2013). Sustainability of hydrogen supply chain. Part I: identification of critical criteria and cause–effect analysis for enhancing the sustainability using DEMATEL. International Journal of Hydrogen Energy, 38(33), 14159–14171.

    Article  CAS  Google Scholar 

  • Rezaeiniya, N., Hashemkhani-Zolfani, S., & Zavadskas, E. K. (2012). Greenhouse locating based on ANP-COPRAS-G methods—an empirical study based on Iran. International Journal of Strategic Property Management, 16(2), 188–200.

    Article  Google Scholar 

  • Roy, S., & Katpatal, Y. B. (2011). Cyclical hierarchical modeling for water quality model-based DSS module in an urban river system. Journal of Environmental Engineering, 137(12), 1176–1184.

    Article  CAS  Google Scholar 

  • Saaty, T. L. (1980). The analytic hierarchy process: planning, priority setting, resources allocation. London: McGraw-Hill. 287 p.

    Google Scholar 

  • Sadati, S. A., Rostami, F., & Fami, H. S. (2010). Sustainable management of water resources in Yazd province: challenges and solutions. Journal of Agricultural Technology, 6(4), 631–642.

    Google Scholar 

  • Sadeghi-Ravesh, M. H., Ahmadi, H., & Zehtabian, G. (2011). Application of sensitivity analysis for assessment of de-desertification alternatives in the central Iran by using Triantaphyllou method. Environmental Monitoring and Assessment, 179, 31–46.

    Article  Google Scholar 

  • Sandoval-Solis, S., McKinney, D. C., & Loucks, D. P. (2011). Sustainability index for water resources planning and management. Journal of Water Resources Planning and Management, 137(5), 381–390.

    Article  Google Scholar 

  • Seyed-Hosseini, S. M., Safaei, N., & Asgharpour, M. J. (2005). Reprioritization of failures in a system failure mode and effects analysis by decision making trial and evaluation laboratory technique. Reliability Engineering and System Safety, 91(8), 872–881.

    Article  Google Scholar 

  • Singh, A., Singai, C. B., Srivastava, S., & Sivam, S. (2009). Inclusive water governance: a global necessity. Lessons from India. Transition Studies Review, 16(2), 598–608.

    Article  Google Scholar 

  • Smeets, E., & Weterings, R. (1999). Environmental indicators: typology and overview, Technical Report nr 25. Copenhagen: European Environment Agency.

  • Tseng, M. L. (2009). Application of ANP and DEMATEL to evaluate the decision-making of municipal solid waste management in Metro Manila. Environmental Monitoring and Assessment, 156(1–4), 181–197.

    Article  Google Scholar 

  • Tzeng, G. H., Chiang, C. H., & Li, C. W. (2007). Evaluating intertwined effects in e-learning programs: a novel hybrid MCDM model based on factor analysis and DEMATEL. Expert Systems with Applications, 32(4), 1028–1044.

    Article  Google Scholar 

  • Vermaat, J. E., Estradivari, E., & Becking, L. E. (2012). Present and future environmental impacts on the coastal zone of Berau (East Kalimantan, Indonesia), a deductive scenario analysis. Regional Environmental Change, 12(3), 437–444.

    Article  Google Scholar 

  • Wang, J. H., Xiao, W. H., Wang, H., Chai, Z. K., Niu, C. W., & Li, W. (2013). Integrated simulation and assessment of water quantity and quality for a river under changing environmental conditions. Chinese Science Bulletin, 58(27), 3340–3347.

    Article  Google Scholar 

  • Wiek, A., & Larson, K. L. (2012). Water, people, and sustainability—a systems framework for analyzing and assessing water governance regimes. Water Resources Management, 26(11), 3153–3171.

    Article  Google Scholar 

  • Wulff, H. E. (1968). The qanats of Iran. Scientific American, 218(4), 94–105.

    Article  Google Scholar 

  • Yu, X., & Meuwissen, T. H. E. (2011). Using the Pareto principle in genome-wide breeding value estimation. Genetics Selection Evolution. doi:10.1186/1297-9686-43-35.

    Google Scholar 

  • Zavadskas, E. K., Kaklauskas, A., Turskis, Z., & Tamoaitiene, J. (2009). Multi-attribute decision-making model by applying grey numbers. Informatica, 20(2), 305–320.

    Google Scholar 

  • Zavadskas, E. K., Kaklauskas, A., Turskis, Z., Tamosaitiene, J., & Kalibatas, D. (2011). Assessment of the indoor environment of dwelling houses by applying the COPRAS-G method: Lithuania case study. Environmental Engineering and Management Journal, 10(5), 637–647.

    CAS  Google Scholar 

  • Zhou, J. L., Bai, Z. H., & Sun, Z. Y. (2014). A hybrid approach for safety assessment in high-risk hydropower-construction-project work systems. Safety Science, 64, 163–172.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Associate Editor, and two anonymous reviewers for their valuable associate comments and constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Azarnivand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azarnivand, A., Chitsaz, N. Adaptive policy responses to water shortage mitigation in the arid regions—a systematic approach based on eDPSIR, DEMATEL, and MCDA. Environ Monit Assess 187, 23 (2015). https://doi.org/10.1007/s10661-014-4225-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-014-4225-4

Keywords

Navigation