Skip to main content
Log in

Soil microbial properties after 5 years of consecutive amendment with composted tannery sludge

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Composting has been recognised an alternative method to tannery sludge recycling and afterwards to be used in agriculture. As the tannery sludge contains salts and chromium, the application of composted tannery sludge (CTS) should be performed carefully to minimise negative effects on soil microbial properties. Therefore, this study evaluated the effects of 5-year repeated CTS amendment on soil microbial biomass (SMB) and enzyme activities in a tropical soil. CTS was applied during 5 years at 0, 2.5, 5, 10 and 20 Mg ha−1, and at the fifth year, the microbial biomass C (MBC) and N (MBN), basal and substrate-induced respiration (SIR), metabolic quotient (qCO2) and dehydrogenase (DHA) and fluorescein diacetate (FDA) hydrolysis were determined in the soil samples. Soil MBC and MBN showed the highest values with the amendment of 5 Mg ha−1 CTS. Soil respiration increased with the increase in CTS rates, while SIR showed the highest values with the amendment of 0, 2.5 and 5 Mg ha−1 CTS. DHA activity showed the highest values with the amendment up to 2.5 Mg ha−1, while FDA hydrolysis increased up to the rate of 5 Mg ha−1 CTS. The results show that after 5 years of permanent amendment of CTS, soils amended with 2.5 Mg ha−1 have SMB and enzymatic activities similar to those in unamended soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alef, K., & Nannipieri, P. (1995). Methods in soil microbiology and biochemistry. New York: Academic.

    Google Scholar 

  • APHA. (2005). Standard methods for the examination for water and wastewater. Washington: American Public Health Association. 1600 pp.

    Google Scholar 

  • Araújo, A. S. F., & Monteiro, R. T. R. (2006). Microbial biomass and activity in a Brazilian soil plus untreated and composted textile sludge. Chemosphere, 64, 1043–1046.

    Article  Google Scholar 

  • Araújo, A. S. F., Monteiro, R. T. R., & Carvalho, E. M. S. (2007). Effect of textile sludge composted on growth, nodulation and nitrogen fixation of soybean and cowpea. Bioresource Technology, 98, 1028–1032.

    Article  Google Scholar 

  • Araujo, A. S. F., Cesarz, S., Leite, L. F. C., Borges, C. D., Tsai, S. M., & Eisenhauer, N. (2013a). Soil microbial properties and temporal stability in degraded and restored lands of Northeast Brazil. Soil Biology & Biochemistry, 66, 175–181.

    Article  CAS  Google Scholar 

  • Araujo, A. S. F., Silva, M. D. M., Leite, L. F. C., Araujo, F. F., & Dias, N. S. (2013b). Soil pH, electric conductivity and organic matter after three years of consecutive applications of composted tannery sludge. African Journal of Agricultural Research, 8, 1204–1208.

    Google Scholar 

  • Bremner, J. M. (1996). Nitrogen-total. In J. M. Bigham (Ed.), Methods of soil analysis, part 3 (pp. 1085–1121). Madison: Soil Science Society of America, American Society of Agronomy.

    Google Scholar 

  • Brookes, P. C., Landman, A., Pruden, G., & Jenkinson, D. S. (1985). Chloroform fumigation and the release of soil nitrogen, a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry, 17, 837–842.

    Article  CAS  Google Scholar 

  • Casida, L. E., Klein, D. A., & Santoro, T. (1965). Soil dehydrogenase activity. Soil Science, 98, 371–376.

    Article  Google Scholar 

  • CICB (2013). Informações Econômicas. Centro das Indústrias de Curtume do Brasil. http://www.cicb.org.br/?p=10817. Accessed 20 October 2014.

  • CONAMA (2009). Define critérios e procedimentos para o uso de lodos de esgoto gerados em estações de tratamento de esgoto sanitário e seus produtos derivados. Resolução N° 375 Diário Oficial da União, DF, N° 167. p. 141–146. Conselho Nacional do Meio Ambiente (Conama), Brasília, Brazil.

  • Fernandes, S. A. P., Bettiol, W., & Cerri, C. C. (2005). Effect of sewage sludge on microbial biomass, basal respiration, metabolic quotient and soil enzymatic activity. Applied Soil Ecology, 30, 65–77.

    Article  Google Scholar 

  • Forster, J. C. (1995). Soil sampling and storage. In K. Alef & P. Nannipieri (Eds.), Methods in applied soil microbiology and biochemistry (p. 49). London: Academic.

    Chapter  Google Scholar 

  • Frankenberger, W. T., & Bingham, F. T. (1982). Influence of salinity on soil enzyme activities. Soil Science Society of American Journal, 46, 1173–1177.

    Article  CAS  Google Scholar 

  • García-Gil, J. C., Plaza, C., Soler-Rovira, P., & Polo, A. (2000). Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biology & Biochemistry, 32, 1907–1913.

    Article  Google Scholar 

  • Giacometti, C., Cavani, L., Gioacchini, P., Ciavatta, C., & Marzadori, C. (2012). Soil application of tannery land plaster, effects on nitrogen mineralization and soil biochemical properties. Applied Environmental Soil Science, 1, 1–9.

    Article  Google Scholar 

  • Gonçalves, I. C. R., Araujo, A. S. F., Nunes, L. A. P. L., & Melo, W. J. (2014). Soil microbial biomass after two years of consecutive application of composted tannery sludge. Acta Scientiarum Agronomy, 36, 35–41.

    Article  Google Scholar 

  • Kizilkaya, R., Askin, T., Bayrakli, B., & Saglam, M. (2004). Microbiological characteristics of soils contaminated with heavy metals. European Journal of Soil Biology, 40, 95–102.

    Article  CAS  Google Scholar 

  • Lavelle, P., & Spain, A. (2001). Soil ecology. Dordrecht: The Netherlands, Kluwer Academic Publishers.

    Book  Google Scholar 

  • Lopes, E. L. N., Fernandes, A. R., Ruivo, M. L. P., Cattanio, J. H., & Souza, G. F. (2011). Microbial biomass and soil chemical properties under different land use systems in northeastern Pará. Revista Brasileira de Ciência do Solo, 35, 1127–1139.

    Article  CAS  Google Scholar 

  • Martí, E., Sánchez, M., Sierra, J., Cruanas, R., & Garau, M. A. (2007). Ecotoxicological tests assessment of soils polluted by chromium (VI) and pentachlorophenol. Science of Total Environment, 378, 53–57.

    Article  Google Scholar 

  • Martines, A. M., Nogueira, M. A., Santos, C. A., Nakatani, A. S., Andrade, C. A., Coscione, A. R., Cantarella, H., Sousa, J. P., & Cardoso, E. J. B. N. (2010). Ammonia volatilization in soil treated with tannery sludge. Bioresource Technology, 101, 4690–4696.

    Article  CAS  Google Scholar 

  • Marzadori, C., Ciavatta, C., Montecchio, D., & Gessa, C. (1996). Effects of lead pollution on different soil enzyme activities. Biology & Fertility of Soils, 22, 53–58.

    Article  CAS  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In A. L. Page (Ed.), Methods of soil analysis, part 2 (2nd ed.). Madison: American Society of Agronomy.

    Google Scholar 

  • Olcay, F., Şagban, T., Dindar, E., & Başkaya, H. S. (2013). Biostimulating effects of wastewater sludges on stressed soils. Journal of Biology and Environmental Science, 7, 153–161.

    Google Scholar 

  • Patel, A., & Patra, D. D. (2014). Influence of heavy metal rich tannery sludge on soil enzymes vis-à-vis growth of Tagetes minuta, an essential oil bearing crop. Chemosphere, 112, 323–332.

    Article  CAS  Google Scholar 

  • Richards, L. A. (1954). Diagnosis improvements of saline and alkaline soils. Washington: Department of Agriculture. 160p.

    Google Scholar 

  • Ros, M., Pascual, J. A., Garcia, C., Hernandez, M. T., & Insam, H. (2006). Hydrolase activities, microbial biomass and bacterial community in a soil after long-term amendment with different composts. Soil Biology & Biochemistry, 38, 3443–3452.

    Article  CAS  Google Scholar 

  • Santos, J. A., Nunes, L. A. P. L., Melo, W. J., & Araujo, A. S. F. (2011). Tannery sludge compost amendment rates on soil microbial biomass of two different soils. European Journal of Soil Biology, 47, 146–151.

    Article  Google Scholar 

  • Scherer, H. W., Metker, D. J., & Welp, G. (2011). Effect of long-term organic amendments on chemical and microbial properties of a luvisol. Plant Soil Environment, 57, 513–518.

    CAS  Google Scholar 

  • Schnurer, J., & Rosswall, T. (1982). Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Applied & Environmental Microbiology, 43, 1256–1261.

    CAS  Google Scholar 

  • Silva, M. D. M., Barajas-Aceves, M., Araujo, A. S. F., Araujo, F. F., & Melo, W. J. (2014). Soil microbial biomass after three years of consecutive composted tannery sludge amendment. Pedosphere, 24, 469–475.

    Article  Google Scholar 

  • Singh, R. P., & Agrawal, M. (2007). Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere, 67, 2229–2240.

    Article  CAS  Google Scholar 

  • Stępniewska, Z., & Wolińska, A. (2005). Soil dehydrogenase activity in the presence of chromium (III) and (VI). International Agrophysics, 19, 79–83.

    Google Scholar 

  • Svensson, K., & Friberg, H. (2007). Changes in active microbial biomass by earthworms and grass amendments in agricultural soil. Biology & Fertility of Soils, 44, 223–228.

    Article  Google Scholar 

  • Tedesco, M. J., Gianello, C., & Bissani, C. A. (1995). Analises de solos, plantas e outros materiais. Porto Alegre: UFRGS. 252p.

    Google Scholar 

  • Tripathi, R. D., Srivastava, S., Mishra, S., Singh, N., Tuli, R., Gupta, D. K., & Maathuis, F. J. M. (2007). Arsenic hazards, strategies for tolerance and remediation by plants. Trends Biotechnology, 25, 158–165.

    Article  CAS  Google Scholar 

  • USEPA (1996). Acid digestion of sediments, sludge’s and soils. Method 3050b. Washington, EPA, 12p.

  • van der Heijden, M. G. A., Bardgett, R. D., & van Straalen, N. M. (2008). The unseen majority, soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296–31.

    Article  Google Scholar 

  • Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19, 703–707.

    Article  CAS  Google Scholar 

  • Wyszkowska, J., Kucharski, J., Jastrzębska, E., & Hlasko, A. (2001). The biological properties of soil as influenced by chromium contamination. Polish Journal of Environmental Studies, 10, 37–42.

    CAS  Google Scholar 

  • Yeomans, J. C., & Bremner, J. M. (1988). A rapid and precise method for routine determination of organic carbon in soil. Communication in Soil Science and Plant Analysis, 19, 1467–1476.

    Article  CAS  Google Scholar 

  • Zimmermann, S., & Frey, B. (2002). Soil respiration and microbial properties in an acid forest soil, effects of wood ash. Soil Biology & Biochemistry, 34, 1727–1737.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq-Brazil) and “Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior” (CAPES). A.S.F Araújo and W.J. Melo are supported by a personal grant from CNPq-Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ademir Sérgio Ferreira Araujo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araujo, A.S.F., Miranda, A.R.L., Oliveira, M.L.J. et al. Soil microbial properties after 5 years of consecutive amendment with composted tannery sludge. Environ Monit Assess 187, 4153 (2015). https://doi.org/10.1007/s10661-014-4153-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-014-4153-3

Keywords

Navigation