Skip to main content
Log in

Distribution and baseline values of trace elements in the sediment of Var River catchment, southeast France

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study reports on the determination of trace element (TE)—Li, As, Co, Cs, Cu, Pb, U, and Zn—and major element (ME)—Si, Al, Fe, Mg, Ca, Mn, Na, and K—concentrations in 18 riverbed sediments and a sediment core from the Var River catchment using inductively coupled plasma mass spectrometry (ICP-MS). The results were compared with those of a reference sediment core, and the contribution of clay and organic carbon contents in the distribution of TE and ME in the sediment samples was investigated. The mean concentrations of the ME were comparable in both core and riverbed samples and were within the natural averages. In the case of TE, the concentrations were lower in riverbed sediment samples than those found in the sediment core. High mean concentration of As was observed (7.6 μg g−1) in both core and riverbed sediments, relatively higher than the worldwide reported values. The obtained data indicated that the natural high level of arsenic might be originated from the parent rocks, especially metamorphic rocks surrounding granites and from Permian sediments. Statistical approach, viz., Pearson correlation matrix, was applied to better understand the correlation among TE in both riverbed and sediment core samples. No significant metallic contamination was detected in the low Var valley despite of the localization of several industrial facilities. Therefore, results confirm that the concentrations of the TE obtained in the riverbed sediments could be considered as a baseline guide for future pollution monitoring program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acosta, J. A., Martínez-Martínez, S., Faz, A., & Arocena, J. (2011). Accumulations of major and trace elements in particle size fractions of soils on eight different parent materials. Geoderma, 161(1–2), 30–42.

    Article  CAS  Google Scholar 

  • Addinsoft. (2013). “Online support XLSTAT.” Retrieved 14-01-2013, from http://www.xlstat.com/fr/support/.

  • Alabdullah, J., Michel, H., Barci, V., Féraud, G., & Barci-Funel, G. (2013). Spatial and vertical distributions of natural and anthropogenic radionuclides and cesium fractionation in sediments of the Var river and its tributaries (southeast France). Journal of Radioanalytical and Nuclear Chemistry, 298(1), 25–32.

    Article  CAS  Google Scholar 

  • Alonso Castillo, M. L., Vereda Alonso, E., Siles Cordero, M. T., Cano Pavón, J. M., & García de Torres, A. (2011). Fractionation of heavy metals in sediment by using microwave assisted sequential extraction procedure and determination by inductively coupled plasma mass spectrometry. MicroChemical Journal, 98(2), 234–239.

    Article  CAS  Google Scholar 

  • Azcue, J. M., Rosa, F., & Mudroch, A. (1996). Distribution of major and trace elements in sediments and pore water of lake Erie. Journal of Great Lakes Research, 22(2), 389–402.

    Article  CAS  Google Scholar 

  • Balls, P. W., Hull, S., Miller, B. S., Pirie, J. M., & Proctor, W. (1997). Trace metal in Scottish estuarine and coastal sediments. Marine Pollution Bulletin, 34(1), 42–50.

    Article  CAS  Google Scholar 

  • Bam, P. K. E., Akiti, T. T., Osea, D. S., Ganyaglo, Y. S., & Gibrilla, A. (2011). Multivariate cluster analysis of some major and trace elements distribution in an unsaturated zone profile, Densu River Basin, Ghana. African Journal of Environmental Science and Technology, 5(3), 155–167.

    CAS  Google Scholar 

  • Banat, K. M., & Howari, F. M. (2003). Pollution load of Pb, Zn, and Cd and mineralogy of the recent sediments of Jordan River/Jordan. Environment International, 28, 581–586.

    Article  CAS  Google Scholar 

  • Barats, A., Féraud, G., Potot, C., Thaon, A. L., & Solima, D. (2010). Detailed prospecting of As-low sources in southeastern France. Goldschmidt 2010. USA. Geochimica and Cosmochimica Acta, 74, A50.

    Google Scholar 

  • Barci, V., Barci-Funel, G., Michel, H., Féraud, G., Dubar, M., Alabdullah, J., et al. (2009). Sediment dating and groundwater residence time in the lower basin of the Var river by radiochemistry and γ-ray spectrometry methods. Compte Rendue Chimie, 12(8), 861–864.

    Article  CAS  Google Scholar 

  • Bhuiyan, M. A. H., Parvez, L., Islam, M. A., Dampare, S. B., & Suzuki, S. (2010). Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Journal of Hazardous Materials, 173(1–3), 384–392.

    Article  CAS  Google Scholar 

  • Chen, J., Yuan, J., Wu, S., Lin, B., & Yang, Z. (2012). Distribution of trace element contamination in sediments and riverine agricultural soils of the Zhongxin River, South China, and evaluation of local plants for biomonitoring. Journal of Environmental Monitoring, 14(10), 2663–2672.

    Article  CAS  Google Scholar 

  • Cho, Y. G., Lee, C. B., & Choi, M. S. (1999). Geochemistry of surface sediments off the southern and western coasts of Korea. Marine Geology, 159, 111–129.

    Article  CAS  Google Scholar 

  • Cidu, R., & Biddau, R. (2007). Transport of trace elements under different seasonal conditions: effects on the quality of river water in a Mediterranean area. Applied Geochemistry, 22(12), 2777–2794.

    Article  CAS  Google Scholar 

  • Dassenakis, M., Scoullos, M., & Gaitis, A. (1997). Trace metals transport and behaviour in the Mediterranean estuary of Acheloos river. Marine Pollution Bulletin, 34(2), 103–111.

    Article  CAS  Google Scholar 

  • Datta, D. K., & Subramanian, V. (1997). Texture and mineralogy of sediments from the Ganges-Brahmaputra-Meghna river system in the Bengal basin, Bangladesh and their environmental implications. Environmental Geology, 30, 181–188.

    Article  Google Scholar 

  • Eça, G. F., Pedreira, R. M. A., & Hatje, V. (2013). Trace and major elements distribution and transfer within a benthic system: polychaete Chaetopterus variopedatus, commensal crab Polyonyx gibbesi, worm tube, and sediments. Marine Pollution Bulletin, 74(1), 32–41.

    Article  Google Scholar 

  • Epov, V. N., Lariviere, D., Epova, E. N., & Evans, R. D. (2004). Polyatomic interferences produced by macroelements during direct multi-elemental ICP-MS hydrochemical analysis. Geostandards and Geoanalytical Research, 28(2), 213–224.

    Article  CAS  Google Scholar 

  • Eurachem (1998). The fitness for purpose of analytical methods: a laboratory guide to method validation and related topics, http://www.eurachem.org/images/stories/Guides/pdf/valid.pdf.

  • Féraud, G., Potot, C., Fabretti, J. F., Guglielmi, Y., Fiquet, M., Barci, V., et al. (2009). Trace elements as geochemical markers for surface waters and groundwaters of the Var River catchment (Alpes Maritimes, France). Compte Rendue Chimie, 12(8), 922–932.

    Article  Google Scholar 

  • Gaillardet, J., Viers, J. & Dupré, B. (2003). Treatise on Geochemistry, Elsevier.

  • Hans Wedepohl, K. (1995). The composition of the continental crust. Geochimica and Cosmochimica Acta, 59(7), 1217–1232.

    Article  Google Scholar 

  • Harris, M., & Radtke, A. S. (1976). Statistical study of selected trace elements with reference to geology and genesis of the carlin gold deposit. Washington: Nevada.

    Google Scholar 

  • Hsieh, I. T., Mok, H. K., Ko, F. C., & Açik, S. (2013). Environmental assessment of trace element bioaccumulation in sipunculan from seagrass and wetland sediments. Environmental Monitoring and Assessment, 185(3), 2269–2279.

    Article  CAS  Google Scholar 

  • Jude, E. O., Akaegbobi, M. I., Omolemo, O. O. I., & Robert, B. F. (2009). Statistical analysis of geochemical distribution of major and trace elements of the maastrichtian coal measures in the anambra basin, Nigeria. Petroleum and Coal, 51(4), 260–269.

    Google Scholar 

  • Klassen, R. A. (1998). Geological factors affecting the distribution of trace metals in glacial sediments of central Newfoundland. Environmental Geology, 33(2–3), 154–169.

    Article  CAS  Google Scholar 

  • Kumar Sarkar, S., Franciskovic-Bilinski, S., Bhattacharya, A., Saha, M., & Bilinski, H. (2004). Levels of elements in the surficial estuarine sediments of the Hugli River, northeast India and their environmental implications. Environment International, 30(8), 1089–1098.

    Article  CAS  Google Scholar 

  • Kumar, S., Lal, R., Liu, D., & Rafiq, R. (2013). Estimating the spatial distribution of organic carbon density for the soils of Ohio, USA. Journal of Geographical Sciences, 23(2), 280–296.

    Article  Google Scholar 

  • Lee, C. B., Park, Y. A., Kang, H. J., & Kim, D. C. (1991). Geochemical characteristics of the continental shelf and slope sediments off the southeastern coast of Korea. Quaternary Research, 5, 15–32.

    Google Scholar 

  • Lovrenčić Mikelić, I., Oreščanin, V., & Barišić, D. (2013). Distribution and origin of major, minor, and trace elements in sediments and sedimentary rocks of the Kaštela Bay (Croatia) coastal area. Journal of Geochemical Exploration, 128, 1–13.

    Article  Google Scholar 

  • Magesh, N. S., Chandrasekar, N., & Vetha Roy, D. (2011). Spatial analysis of trace element contamination in sediments of Tamiraparani estuary, southeast coast of India. Estuarine, Coastal and Shelf Science, 92(4), 618–628.

    Article  CAS  Google Scholar 

  • Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: a review. Talanta, 16(1), 201–235.

    Article  Google Scholar 

  • Martin, J. M., & Whitfield, M. (1983). The significance of the river input of chemical elements to the ocean. In C. S. Wong, E. Boyle, K. W. Bruland, J. D. Burton, & E. D. Goldberg (Eds.), Trace Metals in Seawater (pp. 265–296). New York: Plenum Press.

    Chapter  Google Scholar 

  • Pekey, H., Karakaş, D., Ayberk, S., Tolun, L., & Bakoǧlu, M. (2004). Ecological risk assessment using trace elements from surface sediments of İzmit Bay (Northeastern Marmara Sea) Turkey. Marine Pollution Bulletin, 48(9–10), 946–953.

    Article  CAS  Google Scholar 

  • Potot, C., Féraud, G., Schärer, U., Barats, A., Durrieu, G., Le Poupon, C., et al. (2012). Groundwater and river baseline quality using major, trace elements, organic carbon and Sr–Pb–O isotopes in a Mediterranean catchment: the case of the Lower Var Valley (south-eastern France). Journal of Hydrology, 472–473, 126–147.

    Article  Google Scholar 

  • Purohit, K. K., Mukherjee, P. K., Khanna, P. P., Saini, N. K., & Rathi, M. S. (2001). Heavy metal distribution and environmental status of Doon Valley soils, Outer Himalaya, India. Environmental Geology, 40(6), 716–724.

    Article  CAS  Google Scholar 

  • Reimann, C., & Garrett, R. G. (2005). Geochemical background-concept and reality. Science of the Total Environment, 350(1–3), 12–27.

    Article  CAS  Google Scholar 

  • Rudnick, R. L. (2005). The Crust: treatise on Geochemistry, Gulf Professional Publishing.

  • Rudnick, R. L., & Fountain, D. M. (1995). Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics, 33(3), 267–309.

    Article  Google Scholar 

  • Salminen, R., & Tarvainen, T. (1997). The problem of defining geochemical baselines. A case study of selected elements and geological materials in Finland. Journal of Geochemical Exploration, 60(1), 91–98.

    Article  CAS  Google Scholar 

  • Santos Bermejo, J. C., Beltrán, R., & Gómez Ariza, J. L. (2003). Spatial variations of heavy metals contamination in sediments from Odiel river (Southwest Spain). Environment International, 29(1), 69–77.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, K. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568.

    Article  CAS  Google Scholar 

  • Stephen-Pichaimani, V., Jonathan, M. P., Srinivasalu, S., Rajeshwara-Rao, N., & Mohan, S. P. (2008). Enrichment of trace metals in surface sediments from the northern part of Point Calimere, SE coast of India. Environmental Geology, 55, 1811–1819.

    Article  CAS  Google Scholar 

  • Tiwari, M., Sahu, S. K., Bhangare, R. C., Ajmal, P. Y., & Pandit, G. G. (2013). Depth profile of major and trace elements in estuarine core sediment using the EDXRF technique. Applied Radiation and Isotopes, 80, 78–83.

    Article  CAS  Google Scholar 

  • Venugopal, T., Giridharan, L., & Jayaprakash, M. (2009). Application of chemometric analysis for identifying pollution sources: a case study on the River Adyar, India. Marine and Freshwater Research, 60(12), 1254–1264.

    Article  CAS  Google Scholar 

  • Vystavna, Y., Huneau, F., Schäfer, J., Motelica-Heino, M., Blanc, G., Larrose, A., et al. (2012). Distribution of trace elements in waters and sediments of the Seversky Donets transboundary watershed (Kharkiv region, Eastern Ukraine). Applied Geochemistry, 27(10), 2077–2087.

    Article  CAS  Google Scholar 

  • White, R. E. (1994). Principles and practice of soil science: the soil as a natural resource. United Kingdom: Blackwell Science.

    Google Scholar 

  • Wu, B., Zhao, D., Zhang, Y., Zhang, X., & Cheng, S. (2009). Multivariate statistical study of organic pollutants in Nanjing reach of Yangtze River. Journal of Hazardous Materials, 169(1–3), 1093–1098.

    Article  CAS  Google Scholar 

  • Wyse, E. J., Azemard, S. & de Mora, S. J. (2004). World-wide intercomparaison excercise for the determination of trace elements and methylmercury in marine sediment IAEA-433, http://www.iaea.org/monaco/files/IAEA433.pdf.

  • Yang, H., & Rose, N. (2005). Trace element pollution records in some UK lake sediments, their history, influence factors and regional differences. Environment International, 31(1), 63–75.

    Article  Google Scholar 

  • Yeghicheyan, D., Carignan, J., Valladon, M., Le Coz, M. B., Cornec, F. L., Castrec-Rouelle, M., et al. (2001). A compilation of silicon and thirty one trace elements measured in the natural river water reference material SLRS-4 (NRC-CNRC). Geostandards Newsletter, 25(2–3), 465–474.

    Article  CAS  Google Scholar 

  • Zhang, Q., Kang, S., Li, C., Chen, F., Boukalova, Z., & Černý, I. (2011). Assessment of elemental distribution and trace element contamination in surficial wetland sediments, Southern Tibetan Plateau. Environmental Monitoring and Assessment, 177(1–4), 301–313.

    Article  CAS  Google Scholar 

  • Zhang, L., Yin, K., Yang, Y., & Zhang, D. (2013). Distribution characteristics and sources of sedimentary organic matter in the pearl river estuary and adjacent coastal waters, southern China. Journal of Earth Science, 24(2), 262–273.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The first author would like to thank the Atomic Energy Commission of Syria for the financial support. Authors would like to thank Dr V. Barci and Dr. M. Dubar for technical supports and useful discussion, and the anonym reviewers for the helpful remarks. This study was sponsored by Conseil Général des Alpes Maritimes, Agence de l’Eau RMC, Conseil Régional PACA, Syndicat Mixte d’Etudes de la Basse Vallée du Var, PPF grant, and Véolia-eau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamal Al Abdullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Abdullah, J., Michèl, H., Funel, G.B. et al. Distribution and baseline values of trace elements in the sediment of Var River catchment, southeast France. Environ Monit Assess 186, 8175–8189 (2014). https://doi.org/10.1007/s10661-014-3996-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3996-y

Keywords

Navigation