Skip to main content

Advertisement

Log in

Assessment of the redistribution of soil carbon using a new index—a case study in the Haihe River Basin, North China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil carbon redistribution is an important process in the terrestrial carbon cycle. This study describes a new index, soil carbon redistribution (SCR) index, that can be used to assess long-term soil carbon redistribution at a large watershed scale. The new index is based on the theoretical preconditions that soil carbon redistribution is mainly controlled by vegetation type, precipitation, topography/slope, and soil carbon concentration. The Haihe River Basin served as an example for this analysis. The SCR index was calculated, and a GIS-based map shows its spatial patterns. The results suggested that soil carbon was usually prone to being carried away from mountainous regions with natural vegetation, while it was prone to deposition in the plain and plateau regions with cultivated vegetation. The methods in the paper offer a tool that can be used to quantify the potential risk where soil carbon is prone to being carried away and deposited in a large watershed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alewell, C., Meusburger, K., Brodbeck, M., & Baninger, D. (2008). Methods to describe and predict soil erosion in mountain regions. Landscape and Urban Planning, 88, 46–53.

    Article  Google Scholar 

  • Avtar, R., Singh, C. K., Shashtri, S., & Mukherjee, S. (2011). Identification of erosional and inundation hazard zones in Ken–Betwa river linking area, India, using remote sensing and GIS. Environmental Monitoring and Assessment, 182, 341–360.

    Article  Google Scholar 

  • Chen, L., Li, Z. B., Li, P., Yu, G. Q., & Jia, L. L. (2011). The coupling effect on soil erosion and nutrient lost under a simulated rainfall. Journal of Basic Science and Engineering, 19(Supplement), 170–177.

    Google Scholar 

  • Conforti, M., Aucelli, P. P. C., Robustelli, G., & Scarciglia, F. (2011). Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Natural Hazards, 56, 881–898.

    Article  Google Scholar 

  • Cowie, A., Smith, P., & Johnson, D. (2006). Does soil carbon loss in biomass production systems negate the greenhouse benefits of bioenergy? Mitigation and Adaptation Strategies for Global Change, 11, 979–1002.

    Article  Google Scholar 

  • Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165–173.

    Article  CAS  Google Scholar 

  • Dawson, J. C., & Smith, P. (2007). Carbon losses from soil and its consequences for land-use management. Science of the Total Environment, 382, 165–190.

    Article  CAS  Google Scholar 

  • Doetterl, S., Van Oost, K., & Six, J. (2012). Towards constraining the magnitude of global agricultural sediment and soil organic carbon fluxes. Earth Surface Processes and Landforms, 37, 642–655.

    Article  Google Scholar 

  • Editorial. (2005). Soil erosion and carbon dynamics. Soil & Tillage Research, 81, 137–142.

    Article  Google Scholar 

  • Fang, H. J., Cheng, S. L., Zhang, X. P., Liang, A. Z., Yang, X. M., & Drury, S. M. (2006). Impact of soil redistribution in a sloping landscape on carbon sequestration in Northeast China. Land Degradation & Development, 17, 89–96.

    Article  Google Scholar 

  • Gao, P., Wang, B., Geng, G. P., & Zhang, G. C. (2013). Spatial distribution of soil organic carbon and total nitrogen based on GIS and geostatistics in a small watershed in a hilly area of Northern China. PLoS ONE, 8, 1–9.

    Google Scholar 

  • Gregorich, E. G., Greer, K. J., Anderson, D. W., & Liang, B. C. (1998). Carbon distribution and losses: erosion and deposition effects. Soil & Tillage Research, 47, 291–302.

    Article  Google Scholar 

  • Hancock, G. R., Murphy, D., & Evans, K. G. (2010). Hillslope and catchment scale soil organic carbon concentration: an assessment of the role of geomorphology and soil erosion in an undisturbed environment. Geoderma, 155, 36–45.

    Article  CAS  Google Scholar 

  • Hirmas, D. R., Amrhein, C., & Graham, R. C. (2010). Spatial and process-based modeling of soil inorganic carbon storage in an arid piedmont. Geoderma, 154, 486–494.

    Article  CAS  Google Scholar 

  • Janzen, H. H. (2004). Carbon cycling in earth systems—a soil science perspective. Agriculture, Ecosystems and Environment, 104, 399–417.

    Article  CAS  Google Scholar 

  • Kamoni, P. T., Gicheru, P. T., & Wokabi, S. M. (2007). Predicted soil organic carbon stocks and changes in Kenya between 1990 and 2030. Agriculture, Ecosystems and Environment, 122, 105–113.

    Article  CAS  Google Scholar 

  • Kemanian, A. R., Julich, S., Manoranjan, V. S., & Arnold, J. R. (2011). Integrating soil carbon cycling with that of nitrogen and phosphorus in the watershed model SWAT: theory and model testing. Ecological Modelling, 222, 1913–1921.

    Article  CAS  Google Scholar 

  • Lal, R. (2002). Soil carbon dynamics in cropland and rangeland. Environmental Pollution, 116, 353–362.

    Article  CAS  Google Scholar 

  • McCarty, G. W., & Ritchie, J. C. (2002). Impact of soil movement on carbon sequestration in agricultural ecosystems. Environmental Pollution, 116, 423–430.

    Article  CAS  Google Scholar 

  • Ozcan, A. U., Erpul, G., Basaran, M., & Erdogan, H. E. (2008). Use of USLE/GIS technology integrated with geostatistics to assess soil erosion risk in different land uses of Indagi Mountain Pass—Cankiri, Turkey. Environmental Geology, 53, 1731–1741.

    Article  Google Scholar 

  • Page, M., Trustrum, N., Brackley, H., & Baisden, T. (2004). Erosion-related soil carbon fluxes in a pastoral steepland catchment, New Zealand. Agriculture, Ecosystems and Environment, 103, 561–579.

    Article  CAS  Google Scholar 

  • Rimal, B. K., & Lal, R. (2009). Soil and carbon losses from five different land management areas under simulated rainfall. Soil & Tillage Research, 106, 62–70.

    Article  Google Scholar 

  • Sanderman, J., & Amundson, R. (2009). A comparative study of dissolved organic carbon transport and stabilization in California forest and grassland soils. Biogeochemistry, 92, 41–59.

    Article  CAS  Google Scholar 

  • Schwanghart, W., & Jarmer, T. (2011). Linking spatial patterns of soil organic carbon to topography—a case study from south-eastern Spain. Geomorphology, 126, 252–263.

    Article  Google Scholar 

  • Shi, X. Z., Wang, H. J., Yu, D. S., Weindorf, D. C., Cheng, X. F., Pan, X. Z., Sun, W. X., & Chen, J. M. (2009). Potential for soil carbon sequestration of eroded areas in subtropical China. Soil & Tillage Research, 105, 322–327.

    Article  Google Scholar 

  • Shibu, M. E., Van Keulen, H., Leffelaar, P. A., & Aggarwal, P. K. (2010). Soil carbon balance of rice-based cropping systems of the Indo-Gangetic Plains. Geoderma, 160, 143–154.

    Article  CAS  Google Scholar 

  • Sitaula, B. K., Bajracharya, R. M., Singh, B. R., & Solberg, B. (2004). Factors affecting organic carbon dynamics in soils of Nepal/Himalayan region—a review and analysis. Nutrient Cycling in Agroecosystems, 70, 215–229.

    Article  CAS  Google Scholar 

  • Smith, S. V., Bullock, S. H., Hinojosa-Corona, A., Franco-Vizcai, E., Escoto-Rodri, M., Kretzschmar, T. G., Farfa, L. M., & Salazar-Cesen, J. M. (2007). Soil erosion and significance for carbon fluxes in a mountainous Mediterranean-climate watershed. Ecological Applications, 17, 1379–1387.

    Article  CAS  Google Scholar 

  • Stavi, I., & Lal, R. (2011). Loss of soil resources from water-eroded versus uneroded cropland sites under simulated rainfall. Soil Use and Management, 27, 69–76.

    Article  Google Scholar 

  • Van Miegroet, H., Boettinger, J. L., Baker, M. A., Nielsen, J., Evans, D., & Stum, A. (2005). Soil carbon distribution and quality in a montane rangeland-forest mosaic in northern Utah. Forest Ecology and Management, 220, 284–299.

    Article  Google Scholar 

  • Wang, Z. G., Govers, G., Steegen, A., Clymans, W., Van den Putte, A., Langhans, C., Merckx, R., & Oost, K. V. (2010). Catchment-scale carbon redistribution and delivery by water erosion in an intensively cultivated area. Geomorphology, 124, 65–74.

    Article  Google Scholar 

  • Wang, Z., Liu, G. B., Xiu, M. X., Zhang, J., Wang, Y., & Tang, L. (2012). Temporal and spatial variations in soil organic carbon sequestration following revegetation in the hilly Loess Plateau, China. Catena, 99, 26–33.

    Article  CAS  Google Scholar 

  • Wang, Z. P., Han, X. G., Chang, S. C., Wang, B., Yu, Q., Hou, L. Y., & Li, L. H. (2013). Soil organic and inorganic carbon contents under various land uses. Catena, 109, 110–117.

    Article  CAS  Google Scholar 

  • Xu, W. Q., Chen, C., Luo, G. P., & Lin, Q. (2011). Using the CENTURY model to assess the impact of land reclamation and management practices in oasis agriculture on the dynamics of soil organic carbon in the arid region of North-western China. Ecological Complexity, 8, 30–37.

    Article  Google Scholar 

  • Zhang, X., Li, Z. W., Tang, Z. H., Zeng, G. M., Huang, J. Q., Guo, W., Chen, X. L., & Hirsh, A. (2013). Effects of water erosion on the redistribution of soil organic carbon in the hilly red soil region of southern China. Geomorphology, 197, 137–144.

    Article  Google Scholar 

  • Zheng, S. Z., & Li, X. L. (2009). Study on water resources and its sustainable use in the Haihe River Basin. South-to-North Water Transfers and Water Science & Technology, 7, 45–47.

Download references

Acknowledgments

This study was jointly funded by The Division of Hydrological-ecological Function Zone in the Haihe River Basin project (2012ZX07501002002) and a project known as Climate Change: Carbon Budget and Related Issues of the Chinese Academy of Sciences (XDA0505020401, XDA05050408).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liding Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y., Chen, L., Zhou, G. et al. Assessment of the redistribution of soil carbon using a new index—a case study in the Haihe River Basin, North China. Environ Monit Assess 186, 8023–8036 (2014). https://doi.org/10.1007/s10661-014-3985-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3985-1

Keywords

Navigation