Skip to main content
Log in

Can adaptive modulation of traits to urban environments facilitate Ricinus communis L. invasiveness?

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This paper addresses the phenotypic variation among Ricinus communis L. populations in four urban habitat types (road verges, garbage dumps, construction debris, and natural area) in Delhi, India, by evaluating important traits such as plant height, basal circumference, seeds per plant, seed size, seed weight, specific leaf area, and reproductive index. An important biochemical marker, proline, considered as a good plant performance indicator under stress was also quantified in leaves of R. communis to evaluate its response in different habitats. Interestingly, the species showed significant variation in plant height, specific leaf area, seed size, seed weight, and leaf proline content in different habitat types. Leaf proline content was positively related to plant height, specific leaf area, and seed size while negatively related to the total number of seeds/plant. Interestingly, reproductive index, calculated as a ratio of the total number of seeds to the plant height also showed a negative relation with leaf proline content. Results indicated that R. communis exhibits adaptive modulation of growth, reproductive traits, and leaf proline content in various urban habitats which contributes to invasiveness, range expansion, and establishment of the species. The study also gives evidence of how morphological and physiological traits could directly affect invasiveness of R. communis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agrawal, A. A. (2001). Phenotypic plasticity in the interactions and evolution of species. Science, 294, 321–326.

    Article  CAS  Google Scholar 

  • Alba, C., & Hufbauer, R. A. (2012). Exploring the potential for climatic factors, herbivory, and co-occurring vegetation to shape performance in native and introduced populations of Verbascum thapsus. Biological Invasions, 14, 2505–2518.

    Article  Google Scholar 

  • Alia, & Pardha-Saradhi, P. (1993). Suppression in mitochondrial electron transport is the prime cause behind stress induced proline accumulation. Biochemical and Biophysical Research Communications, 193, 54–58.

    Article  CAS  Google Scholar 

  • Alia, Pardha-Saradhi, P., & Mohanty, P. (1997). Involvement of proline in protecting thylakoid membranes against free radical-induced photodamage. Journal of Photochemistry and Photobiology, B: Biology, 38, 253–257.

    Article  CAS  Google Scholar 

  • Anjani, K. (2012). Castor genetic resources: a primary gene pool for exploitation. Industrial Crops and Products, 35, 1–14.

    Article  Google Scholar 

  • Annapurna, C., & Singh, J. S. (2003). Phenotypic plasticity and plant invasiveness: case study of congress grass. Current Science, 85, 197–201.

    Google Scholar 

  • Anonymous. (2006). Economic survey of Delhi. Planning Department, Government of National Capital Territory of Delhi (pp. 1–7): New Delhi

  • Aronson, J., Kigel, J., & Shmida, A. (1993). Reproductive allocation strategies in desert and Mediterranean populations of annual plants grown with and without water stress. Oecologia, 93, 336–342.

    Article  Google Scholar 

  • Baruch, Z., & Goldstein, G. (1999). Leaf construction cost, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawaii. Oecologia, 121, 183–192.

    Article  Google Scholar 

  • Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  • Berg, M. P., & Ellers, J. (2010). Trait plasticity in species interactions: a driving force of community dynamics. Evolutionary Ecology, 24, 617–629.

    Article  Google Scholar 

  • Carter, S., & Smith, A. R. (1987). Euphorbiaceae flora of tropical East Africa. Rotterdam: A.A. Balkema.

    Google Scholar 

  • Chun, Y. J., Collyer, M. L., Moloney, K. A., & Nason, J. D. (2007). Phenotypic plasticity of native vs. invasive purple loosestrife: a two-state multivariate approach. Ecology, 88, 1499–1512.

    Article  Google Scholar 

  • Colautti, R. I., & Barrett, S. C. H. (2013). Rapid adaptation to climate facilitates range expansion of an invasive plant. Science, 342, 364.

    Article  CAS  Google Scholar 

  • Cordell, S., Goldstein, G., Mueller-Dombois, D., Webb, D., & Vitousek, P. M. (1998). Physiological and morphological variation in Metrosideros polymorpha, a dominant Hawaiian tree species, along an altitudinal gradient: the role of phenotypic plasticity. Oecologia, 113, 188–196.

    Article  Google Scholar 

  • Daws, M. I., Hall, J., Flynn, S., & Pritchard, H. W. (2007). Do invasive species have bigger seeds? Evidence from intra- and inter-specific comparisons. South African Journal of Botany, 73, 138–143.

    Article  Google Scholar 

  • Grime, J. P. (1974). Vegetation classification by reference to strategies. Nature, 250, 26–31.

    Article  Google Scholar 

  • Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments. Plant Signaling & Behavior, 7, 1–11.

    Article  Google Scholar 

  • Hejda, M., Pyšek, P., Pergl, J., Sádlo, J., Chytrý, M., & Jarošík, V. (2009). Invasion success of alien plants: do habitats affinities in the native distribution range matter? Global Ecology and Biogeography, 18, 372–382.

    Article  Google Scholar 

  • Joshi, J., Schmid, B., Caldeira, M. C., Dimitrakopoulos, P. G., Good, J., Harris, R., Hector, A., Huss-Danell, K., Jumpponen, A., Minns, A., Mulder, C. P. H., Pereira, J. S., Prinz, A., Scherer-Lorenzen, M., Terry, A. C., Troumbis, A. Y., & Lawton, J. H. (2001). Local adaptation enhances performance of common plant species. Ecology Letters, 4, 536–544.

    Article  Google Scholar 

  • Kauffman, M. J., & Jules, E. S. (2006). Heterogeneity shapes invasion: host size and environment influence susceptibility to a nonnative pathogen. Ecological Applications, 16, 166–175.

    Article  Google Scholar 

  • Krishnan, A. (1977). A climatic analysis of the arid zone of north-western India. In Desertification and its Control (pp. 42–57). New Delhi: ICAR.

    Google Scholar 

  • Lambers, H., & Poorter, H. (1992). Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Advances in Ecological Research, 23, 188–261.

    Google Scholar 

  • Lehmann, C., & Rebele, F. (2005). Phenotypic plasticity in Calamagrostis epigejos (Poaceae): response capacities of genotypes from different populations of contrasting habitats to a range of soil fertility. Acta Oecologica, 28, 127–140.

    Article  Google Scholar 

  • Lockwood, J. L., Cassey, P., & Blackburn, T. (2005). The role of propagule pressure in explaining species invasions. Trends in Ecology and Evolution, 20, 223–228.

    Article  Google Scholar 

  • MacNally, R. C. (1995). Ecological versatility and community ecology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Martins, V. F., Haddad, C. R. B., & Semir, J. (2011). Responses of the invasive Ricinus communis seedlings to competition and light. New Zealand Journal of Botany, 49, 263–279.

    Article  Google Scholar 

  • Mattioli, R., Costantino, P., & Trovato, M. (2009). Proline accumulation in plants: not only stress. Plant Signaling and Behavior, 4, 1016–1018.

    Article  CAS  Google Scholar 

  • Mitchell, C. E., & Power, A. G. (2003). Release of invasive plants from fungal and viral pathogens. Nature, 421, 625–627.

    Article  CAS  Google Scholar 

  • Moodley, D., Geerts, S., Rebelo, T., Richardson, D. M., & Wilson, J. R. U. (2014). Site-specific conditions influence plant naturalization: the case of alien Proteaceae in South Africa. Acta Oecologica, 59, 62–71.

    Article  Google Scholar 

  • Moshkin, V. A. (Ed.). (1986). Castor. New Delhi: Amerind Publishing Co. Pvt. Ltd

  • Novak, S. J., & Mack, R. N. (2005). Genetic bottlenecks in alien plant species: influence of mating systems and introduction dynamics. In D. F. Sax, S. D. Gaines, & J. J. Stachowicz (Eds.), Exotic species—bane to conservation and boon to understanding: ecology, evolution and biogeography (pp. 95–122). USA: Sinauer.

    Google Scholar 

  • Pardha-Saradhi, P., Alia Arora, S., & Prasad, K. V. S. K. (1995). Proline accumulates in plants exposed to UV radiation and protects them against UV. Biochemical and Biophysical Research Communications, 209, 1–5.

    Article  Google Scholar 

  • Parker, J. D., Torchin, M. E., Hufbauer, R. A., Lemoine, N. P., Alba, C., Blumenthal, D. M., Bossdorf, O., Byers, J. E., Dunn, A. M., Heckman, R. W., Hejda, M., Jarošík, V., Kanarek, A. R., Martin, L. B., Perkins, S. E., Pyšek, P., Schierenbeck, K., Schlöder, C., van Klinken, R., Vaughn, K. J., Williams, W., & Wolfe, L. M. (2013). Do invasive species perform better in their new ranges? Ecology, 94, 985–994.

    Article  Google Scholar 

  • Pigliucci, M. (2005). Evolution of phenotypic plasticity: where are we going now? Trends in Ecology and Evolution, 20, 481–486.

    Article  Google Scholar 

  • Pyšek, P., & Richardson, D. M. (2007). Traits associated with invasiveness in alien plants: where do we stand? In W. Nentwig (Ed.), Biological invasions, ecological studies, 193 (pp. 97–126). Berlin & Heidelberg: Springer.

    Google Scholar 

  • Pyšek, P., Jarošík, V., Hulme, P. E., Pergl, J., Hejda, M., Schaffner, U., & Vilà, M. (2012). A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Global Change Biology, 18, 1725–1737.

    Article  Google Scholar 

  • Regehr, D. L., & Bazzaz, F. A. (1979). The population dynamics of Erigeron canadensis, a successional winter annual. Journal of Ecology, 67, 923–933.

    Article  Google Scholar 

  • Reich, P. B., Walters, M. B., & Ellsworth, D. S. (1997). From tropics to tundra: global convergence in plant functioning. Proceedings of National Academy of Science USA, 94, 13730–13734.

    Article  CAS  Google Scholar 

  • Rejmánek, M., & Richardson, D. M. (1996). What attributes make some plant species more invasive? Ecology, 77, 1655–1661.

    Article  Google Scholar 

  • Richards, C. L., Bossdorf, O., Muth, N. Z., Gurevitch, J., & Pigliucci, M. (2006). Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters, 9, 981–993.

    Article  Google Scholar 

  • Richardson, D. M., & Pyšek, P. (2006). Plant invasions—merging the concepts of species invasiveness and community invasibility. Progress in Physical Geography, 30, 409–431.

    Article  Google Scholar 

  • Scheiner, S. M. (1993). Genetics and evolution of phenotypic plasticity. Annual Review of Ecology and Systematics, 24, 35–68.

    Article  Google Scholar 

  • Schlichting, C. D. (1986). The evolution of phenotypic plasticity in plants. Annual Review of Ecology and Systematics, 17, 667–693.

    Article  Google Scholar 

  • Sexton, J. P., McKay, J. K., & Sala, A. (2002). Plasticity and genetic diversity may allow saltcedar to invade cold climates in North America. Ecological Applications, 12, 1652–1660.

    Article  Google Scholar 

  • Sharma, G. P., & Esler, K. J. (2008). Phenotypic plasticity among Echium plantagineum populations in different habitats of Western Cape, South Africa. South African Journal of Botany, 74, 746–749.

    Article  Google Scholar 

  • Sharma, G. P., & Raghubanshi, A. S. (2009). Plant invasions along roads: a case study from central highlands, India. Environmental Monitoring and Assessment, 157, 191–198.

    Article  Google Scholar 

  • Sharma, G. P., Raghubanshi, A. S., & Singh, J. S. (2005). Lantana invasion: an overview. Weed Biology and Management, 5, 157–165.

    Article  Google Scholar 

  • Simberloff, D., Martin, J. L., Genovesi, P., Maris, V., Wardle, D. A., Aronson, J., Courchamp, F., Galil, B., García-Berthou, E., Pascal, M., Pyšek, P., Sousa, R., Tabacchi, E., & Vilà, M. (2013). Impacts of biological invasions: what’s what and the way forward. Trends in Ecology and Evolution, 28, 58–66.

    Article  Google Scholar 

  • Skálová, H., Havlíčková, V., & Pyšek, P. (2012). Seedling traits, plasticity and local differentiation as strategies of invasive species of Impatiens in central Europe. Annals of Botany, 110, 1429–1438.

    Article  Google Scholar 

  • Song, L. Y., Ni, G. Y., Chen, B. M., & Peng, S. L. (2007). Energetic cost of leaf construction in the invasive weed Mikania micrantha H.B.K. and its co-occurring species: implications for invasiveness. Botanical Studies, 48, 331–338.

    CAS  Google Scholar 

  • SPSS Inc. 2007. SPSS for Windows, Version 16.0 Release. Chicago, SPSS Inc.

  • Sultan, S. E. (2000). Phenotypic plasticity for plant development, function, and life-history. Trends in Plants Science, 5, 537–542.

    Article  CAS  Google Scholar 

  • Sultan, S. E. (2003). Phenotypic plasticity in plants: a case study in ecological development. Evolution and Development, 5, 25–33.

    Article  Google Scholar 

  • Todd, P. A. (2008). Morphological plasticity in scleractinian corals. Biological Reviews, 83, 315–337.

    Article  Google Scholar 

  • Torchin, M. E., Lafferty, K. D., & Kuris, A. M. (2001). Release from parasites as natural enemies: increased performance of a globally introduced marine crab. Biological Invasions, 3, 333–345.

    Article  Google Scholar 

  • van Kleunen, M., Weber, E., & Fischer, M. (2010). A meta-analysis of trait differences between invasive and non-invasive plant species. Ecology Letters, 13, 235–245.

    Article  Google Scholar 

  • Via, S., Gomulkievicz, R., de Jong, G., Scheiner, S. M., Schlichting, C. D., & van Tienderen, P. H. (1995). Adaptive phenotypic plasticity: consensus and controversy. Trends in Ecology and Evolution, 10, 212–217.

    Article  CAS  Google Scholar 

  • Yeh, P. J., & Price, T. D. (2004). Adaptive phenotypic plasticity and the successful colonization of a novel environment. American Naturalist, 164, 531–542.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the anonymous reviewers for their valuable comments on previous versions of this manuscript. NG acknowledges Junior Research Fellowship (JRF) support from University Grants Commission, New Delhi, India. PPS acknowledges University of Delhi for financial support. GPS acknowledges funding support from University of Delhi, India, as Seed and Research Grant and Department of Science and Technology, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyan P. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, N., Pardha-Saradhi, P. & Sharma, G.P. Can adaptive modulation of traits to urban environments facilitate Ricinus communis L. invasiveness?. Environ Monit Assess 186, 7941–7948 (2014). https://doi.org/10.1007/s10661-014-3978-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3978-0

Keywords

Navigation