Skip to main content

Advertisement

Log in

Predictive model for chloroform during disinfection of water for consumption, city of Montevideo

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The objective of this study was to predict chloroform formation resulting from the process of disinfecting water, particularly trihalomethane which is most frequently produced. A statistical model was used which included repeated measurements of water parameters used for monitoring water quality at 51 sites covering the municipal water system of Montevideo. Samples were taken considering different seasons from June 2009 to July 2011 in Montevideo. Total samples (n = 330) were analytically studied using the headspace-gas chromatography method coupled with mass spectrometry. Chloroform was the dependent variable and the covariables were pH, temperature, free chlorine, and total chlorine. A Tobit analysis with an unstructured correlation matrix was performed, and a significant interaction was found between pH and free chlorine for the prediction of chloroform formation. We concluded that parameters for the continuous control of water quality for consumption can be used to predict the levels of chloroform that may be present. Given the large measurement to variability found in the repeated measurements, the use of averages that include more than one season is not recommended to determine the degree of compliance with acceptable levels established by norms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achkar M., Dominguez A., & Pesce F. (2013). Cuenca del Rio Santa Lucía -Uruguay. Aportes para la Discusión Ciudadana. http://www.redes.org.uy/wp-content/uploads/2013/01/Publicacion-Santa-Lucia-WEB.pdf. Accessed 19 May 2014.

  • Amy, G. L., Chadik, P. A., & Chowdhury, Z. K. (1987). Developing models for predicting trihalomethane formation potential and kinetics. Journal of the American Water Works Association, 79(7), 89–97.

    CAS  Google Scholar 

  • Amy, G., Siddiqui A., Ozekin K., Zhu H. W., & Wang Ch. (1998). Empirically based models for predicting chlorination and ozonation by-products: trihalomethanes haloacetic acids chloral hydrate and bromate| US EPA. http://yosemite.epa.gov/water/owrccatalog.nsf/065ca07e299b464685256ce50075c11a/69082404e09dbfe085256b0600723732!OpenDocument. Accessed 19 May 2014.

  • Ates, N., Kaplan, S. S., Sahinkaya, E., Kitis, M., Dilek, F. B., & Yetis, U. (2007). Occurrence of disinfection by-products in low DOC surface waters in Turkey. Journal of Hazardous Materials. doi:10.1016/j.jhazmat.2006.08.076.

    Google Scholar 

  • Bove, G. E., Jr., Rogerson, P. A., & Vena, J. E. (2007a). Case-control study of the effects of trihalomethanes on urinary bladder cancer risk. Archives of Environmental & Occupational Health. doi:10.3200/AEOH.62.1.39-47.

    Google Scholar 

  • Bove, G. E., Rogerson, P. A., & Vena, J. E. (2007b). Case control study of the geographic variability of exposure to disinfectant byproducts and risk for rectal cancer. International Journal of Health Geographics. doi:10.1186/1476-072X-6-18.

    Google Scholar 

  • Brown, D., Bridgeman, J., & West, J. (2011). Predicting chlorine decay and THM formation in water supply systems. Reviews in Environmental Science and Biotechnology. doi:10.1007/s11157-011-9229-8.

    Google Scholar 

  • Cantor, K. P., Lynch, C. F., Hildesheim, M. E., Dosemeci, M., Lubin, J., Alavanja, M., & Craun, G. (1998). Drinking water source and chlorination byproducts. I. Risk of bladder cancer. Epidemiology, 9(1), 21–28.

    Article  CAS  Google Scholar 

  • Caro, J., Serrano, A., & Gallego, M. (2007). Sensitive headspace gas chromatography-mass spectrometry determination of trihalomethanes in urine. Journal of Chromatography B. doi:10.1016/j.jchromb.2006.10.034.

    Google Scholar 

  • Chaib, E., & Moschandreas, D. (2008). Modeling daily variation of trihalomethane compounds in drinking water system, Houston, Texas. Journal of Hazardous Materials, doi:10.1016/j.jhazmat.2007.06.049.

  • Chang, C. C., Ho, S.-C., Wang, L. Y., & Yang, C. Y. (2007). Bladder cancer in Taiwan: relationship to trihalomethane concentrations present in drinking-water supplies. Journal of Toxicology and Environmental Health. Part A. doi:10.1080/15287390701459031.

    Google Scholar 

  • Chen, K., Weiping, Y., Xinyan, M., Kaiyan, Y., & Qiting, J. (2005). The association between drinking water source and colorectal cancer incidence in Jiashan county of China: a prospective cohort study. European Journal of Public Health, 15(6), 652–656.

    Article  Google Scholar 

  • Cho, D. H., Kong, S. H., & Oh, S. G. (2003). Analysis of trihalomethanes in drinking water using headspace-SPME technique with gas chromatography. Water Research, 37(2), 402–408.

    Article  CAS  Google Scholar 

  • Chowdhury, S., Champagne, P., & McLellan, P. J. (2009). Models for predicting disinfection byproduct (DBP) formation in drinking waters: a chronological review. Science of the Total Environment. doi:10.1016/j.scitotenv.2009.04.006.

    Google Scholar 

  • Do, M. T., Birkett, N. J., Johnson, K. C., Krewski, D., & Villeneuve, P. (2005). Chlorination disinfection by-products and pancreatic cancer risk. Environmental Health Perspectives. doi:10.1289/ehp.7403.

    Google Scholar 

  • Dodds, L., King, W., Allen, A. C., Armson, B. A., Fell, D. B., & Nimrod, C. (2004). Trihalomethanes in public water supplies and risk of stillbirth. Epidemiology. doi:10.1097/01.ede.0000112209.47765.d9.

    Google Scholar 

  • Egorov, A. I., Tereschenko, A. A., Altshul, L. M., Vartiainen, T., Samsonov, D., LaBrecque, B., & Ford, T. E. (2003). Exposures to drinking water chlorination by-products in a Russian City. International Journal of Hygiene and Environmental Health. doi:10.1078/1438-4639-00244.

    Google Scholar 

  • Garcia-Villanova, R. J., Garcia, C., Gomez, J. A., Garcia, M. P., & Ardanuy, R. (1997). Formation, evolution and modeling of trihalomethanes in the drinking water of a town: II. in the distribution system. Water Research. doi:10.1016/S0043-1354(96)00336-3.

    Google Scholar 

  • Goebell, P. J., Villanueva, C. M., Rettenmeier, A. W., Rübben, H., & Kogevinas, M. (2004). Environmental exposure, chlorinated drinking water, and bladder cancer. World Journal of Urology. doi:10.1007/s00345-003-0389-1.

    Google Scholar 

  • Gopal, K., Tripathy, S. S., Bersillon, J. L., & Dubey, S. P. (2007). Chlorination byproducts, their toxicodynamics and removal from drinking water. Journal of Hazardous Materials. doi:10.1016/j.jhazmat.2006.10.063.

    Google Scholar 

  • Grazuleviciene, R., Kapustinskiene, V., Vencloviene, J., Buinauskiene, J., & Nieuwenhuijsen, M. J. (2013). Risk of congenital anomalies in relation to the uptake of trihalomethane from drinking water during pregnancy. Occupational and Environmental Medicine. doi:10.1136/oemed-2012-101093.

    Google Scholar 

  • Huang, W. J., Fang, G. C., & Wang, C. C. (2005). The determination and fate of disinfection by-products from ozonation of polluted raw water. Science of the Total Environment. doi:10.1016/j.scitotenv.2004.10.019.

    Google Scholar 

  • Hwang, B. F., Per, M., & Jaakkola, J. J. K. (2002). Risk specific birth defects in relation to chlorination and the amount of natural organic matter in the water supply. American Journal of Epidemiology, 156(4), 374–382.

    Article  Google Scholar 

  • Instituto Nacional de Estadística (INE). Uruguay. Censo 2011. (2012). http://www.ine.gub.uy/censos2011/index.html. Accessed 15 Sept 2013.

  • King, W. D., Marrett, L. D., & Woolcott, C. G. (2000). Case-control study of colon and rectal cancers and chlorination by-products in treated water. Cancer Epidemiology, Biomarkers & Prevention, 9(8), 813–818.

    CAS  Google Scholar 

  • Kleiser, G., & Frimmel, F. H. (2000). Removal of precursors for disinfection by-products (Dbps)—differences between ozone- and OH-radical-induced oxidation. Science of the Total Environment, 256(1), 1–9.

    Article  CAS  Google Scholar 

  • Kogevinas, M. (2011). Epidemiological approaches in the investigation of environmental causes of cancer: the case of dioxins and water disinfection by-products. Environmental Health. doi:10.1186/1476-069X-10-S1-S3.

    Google Scholar 

  • Kuo, H. W., Chen, P. S., Ho, S. C., Wang, L. Y., & Yang, C. Y. (2010). Trihalomethanes in drinking water and the risk of death from rectal cancer: does hardness in drinking water matter? Journal of Toxicology and Environmental Health. Part A. doi:10.1080/15287391003689267.

    Google Scholar 

  • Lewis, C., Suffet, I. H., & Ritz, B. (2006). Estimated effects of disinfection by-products on birth weight in a population served by a single water utility. American Journal of Epidemiology. doi:10.1093/aje/kwj009.

    Google Scholar 

  • Lewis, C., Suffet, I. H., Hoggatt, K., & Ritz, B. (2007). Estimated effects of disinfection by-products on preterm birth in a population served by a single water utility. Environmental Health Perspectives. doi:10.1289/ehp.9394.

    Google Scholar 

  • Liang, L., & Singer, P. C. (2003). Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water. Environmental Science & Technology. doi:10.1021/es026230q.

    Google Scholar 

  • Liao, Y. H., Chen, C. C., Chang, C. C., Peng, C. Y., Chiu, H. F., Wu, T. N., & Yang, C. Y. (2012). Trihalomethanes in drinking water and the risk of death from kidney cancer: does hardness in drinking water matter? Journal of Toxicology and Environmental Health. Part A. doi:10.1080/15287394.2012.668162.

    Google Scholar 

  • Loyola-Sepulveda, R., Lopez-Leal, G., Munoz, J., Bravo-Linares, C., & Mudge, S. M. (2009). Trihalomethanes in the drinking water of Concepción and Talcahuano. Chile. Water and Environment Journal. doi:10.1111/j.1747-6593.2008.00140.x.

    Google Scholar 

  • Michaud, D. S., Kogevinas, M., Cantor, K. P., Villanueva, C. M., Garcia-Closas, M., Rothman, N., et al. (2007). Total fluid and water consumption and the joint effect of exposure to disinfection by-products on risk of bladder cancer. Environmental Health Perspectives. doi:10.1289/ehp.10281.

    Google Scholar 

  • Mouly, D., Joulin, E., Rosin, C., Beaudeau, P., Zeghnoun, A., Olszewski-Ortar, A., & Rodriguez, M. J. (2010). Variations in trihalomethane levels in three French water distribution systems and the development of a predictive model. Water Research. doi:10.1016/j.watres.2010.06.028.

    Google Scholar 

  • Nieuwenhuijsen, M., Toledano, M., Eaton, N., Fawell, J., & Elliott, P. (2000). Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: a review. Occupational and Environmental Medicine. doi:10.1136/oem.57.2.73.

    Google Scholar 

  • Norma UNIT 833:2008. (2011). Uruguay. Agua potable. Requisitos. http://www.ursea.gub.uy/web/mnormativo2.nsf/2B6B0DFB7980B41283257A8500649386/$file/Dec%20375-011.pdf?OpenElement. Accessed 19 October 2013.

  • Obolensky, A., & Singer, P. C. (2008). Development and interpretation of disinfection byproduct formation models using the information collection rule database. Environmental Science & Technology, 42(15), 5654–5660.

    Article  CAS  Google Scholar 

  • Panamerican Health Organization (PAHO). (2001). Analisis Sectorial de Agua Potable y Saneamiento Uruguay. http://www.bvsde.paho.org/eswww/fulltext/analisis/uruguaya/uruguaya.pdf. Accessed 19 Jan 2014.

  • Rahman, M. B., Driscoll, T., Cowie, C., & Armstrong, B. K. (2010). Disinfection by-products in drinking water and colorectal cancer: a meta-analysis. International Journal of Epidemiology. doi:10.1093/ije/dyp371.

    Google Scholar 

  • Richardson, S. D., Plewa, M. J., Wagner, E. D., Schoeny, R., & Demarini, D. M. (2007). Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutation Research. doi:10.1016/j.mrrev.2007.09.001.

    Google Scholar 

  • Rios, D. (2006). Riesgos biológicos y subproductos de la desinfección en el agua de bebida. Administración de las Obras Sanitarias del Estado (OSE) de Uruguay. http://www.bvsde.paho.org/bvsacd/cd59/danilorios.pdf. Accessed 19 Dec 2013.

  • Ristoiu, D., Von Gunten, U., Mocan, A., Chira, R., Siegfried, B., Haydee Kovacs, M., & Vancea, S. (2009). Trihalomethane formation during water disinfection in four water supplies in the Somes river basin in Romania. Environmental Science and Pollution Research International. doi:10.1007/s11356-009-0100-1.

    Google Scholar 

  • Rodriguez, M. J., Vinette, Y., Sérodes, J. B., & Bouchard, C. (2003). Trihalomethanes in drinking water of greater Québec region (Canada): occurrence, variations and modelling. Environmental Monitoring and Assessment, 89(1), 69–93.

    Article  CAS  Google Scholar 

  • Sadiq, R., & Rodriguez, M. J. (2004). Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review. Science of the Total Environment. doi:10.1016/j.scitotenv.2003.05.001.

    Google Scholar 

  • Sadiq, R., Kar, S., & Husain, T. (2002). Chloroform associated health risk assessment using bootstrapping: a case study for limited drinking water samples. Journal of Water, Air, and Soil Pollution, 138(1–4), 123–140.

    Article  CAS  Google Scholar 

  • Savitz, D. A., Singer, P. C., Herring, A. H., Hartmann, K. E., Weinberg, H. S., & Makarushka, C. (2006). Exposure to drinking water disinfection by-products and pregnancy loss. American Journal of Epidemiology. doi:10.1093/aje/kwj300.

    Google Scholar 

  • Shaw, G. M., Ranatunga, D., Quach, T., Neri, E., Correa, A., & Neutra, R. R. (2003). Trihalomethane exposures from municipal water supplies and selected congenital malformations. Epidemiology. doi:10.1097/01.EDE.0000050697.18634.A6.

    Google Scholar 

  • Severova V. (1997). Clima del Uruguay y la región. Universidad de la República. Red Académica Uruguaya. http://www.rau.edu.uy/uruguay/geografia/Uy_c-info.htm. Accessed 2 Sept 2013.

  • Toledano, M. B., Nieuwenhuijsen, M. J., Best, N., Whitaker, H., Hambly, P., De Hoogh, C., et al. (2005). Relation of trihalomethane concentrations in public water supplies to stillbirth and birth weight in three water regions in England. Environmental Health Perspectives. doi:10.1289/ehp.7111.

    Google Scholar 

  • United States Environmental Protection Agency (USEPA). (2013). Basic information about disinfection byproducts in drinking water: total trihalomethanes, haloacetic acids, bromate, and chlorite. water.epa.gov/drink/contaminants/basicinformation/disinfectionbyproducts.cfm. Accessed 19 Feb 2014.

  • Uyak, V., Ozdemir, K., & Toroz, I. (2007). Multiple linear regression modeling of disinfection by-products formation in Istanbul drinking water reservoirs. Science of the Total Environment. doi:10.1016/j.scitotenv.2007.02.041.

    Google Scholar 

  • Villanueva, C. M., Kogevinas, M., & Grimalt, J. O. (2001). Chlorination of drinking water in Spain and bladder cancer. Gaceta Sanitaria, 15(1), 48–53.

    Article  CAS  Google Scholar 

  • Villanueva, C. M., Fernández, F., Malats, N., Grimalt, J. O., & Kogevinas, M. (2003). Meta-analysis of studies on individual consumption of chlorinated drinking water and bladder cancer. Journal of Epidemiology and Community Health, 57(3), 166–173.

    Article  CAS  Google Scholar 

  • Villanueva, C. M., Cantor, K. P., Cordier, S., Jaakkola, J. J. K., King, W. D., Lynch, C. F., et al. (2004). Disinfection byproducts and bladder cancer: a pooled analysis. Epidemiology, 15(3), 357–367.

    Article  Google Scholar 

  • Villanueva, C. M., Cantor, K. P., King, W. D., Jaakkola, J. J. K., Cordier, S., Lynch, C. F., et al. (2006). Total and specific fluid consumption as determinants of bladder cancer risk. International Journal of Cancer. doi:10.1002/ijc.21587.

    Google Scholar 

  • Wang, G. S., Deng, Y. C., & Lin, T. F. (2007). Cancer risk assessment from trihalomethanes in drinking water. Science of the Total Environment. doi:10.1016/j.scitotenv.2007.07.029.

    Google Scholar 

  • World Health Organisation. (2011). Guidelines for drinking water quality. Trihalomethanes (bromoform, bromodichloromethane, chloroform, dibromochloromethane). 427–430 . http://www.who.int/water_sanitation_health/publications/2011/9789241548151_ch12.pdf?ua=1. Accesed 6 October 2013).

  • Wright, J. M., Schwartz, J., & Dockery, D. W. (2003). Effect of trihalomethane exposure on fetal development. Occupational and Environmental Medicine, 60(3), 173–180.

    Article  CAS  Google Scholar 

  • Wright, J. M., Schwartz, J., & Dockery, D. W. (2004). The effect of disinfection by-products and mutagenic activity on birth weight and gestational duration. Environmental Health Perspectives, 112(8), 920–925.

    Article  CAS  Google Scholar 

  • Yang, C. Y., Cheng, B. H., Tsai, S. S., Wu, T. N., Lin, M. C., & Lin, K. C. (2000). Association between chlorination of drinking water and adverse pregnancy outcome in Taiwan. Environmental Health Perspectives. doi:10.1289/ehp.00108765.

    Google Scholar 

  • Ye, B., Wang, W., Yang, L., Wei, J., & Xueli, E. (2009). Factors influencing disinfection by-products formation in drinking water of six cities in China. Journal of Hazardous Materials. doi:10.1016/j.jhazmat.2009.05.117.

    Google Scholar 

  • Yoon, J., Choi, Y., Cho, S., & Lee, D. (2003). Low trihalomethane formation in Korean drinking water. Science of the Total Environment, 302(1–3), 157–166.

    Article  CAS  Google Scholar 

  • Zhou, W. S., Xu, L., Xie, S. H., Li, Y. L., Li, L., Zeng, Q., et al. (2012). Decreased birth weight in relation to maternal urinary trichloroacetic acid levels. Science of the Total Environment. doi:10.1016/j.scitotenv.2011.10.073.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by the Honorary Commission for the Fight Against Cancer (Uruguay) (CHLCC, Spanish acronym) and Sectorial Commission of Scientific Research Universidad de la República (Uruguay) (CSIC-UdelaR, Spanish acronym).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Rothenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez Camponovo, M., Seoane Muniz, G., Rothenberg, S.J. et al. Predictive model for chloroform during disinfection of water for consumption, city of Montevideo. Environ Monit Assess 186, 6711–6719 (2014). https://doi.org/10.1007/s10661-014-3884-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3884-5

Keywords

Navigation