Skip to main content
Log in

Water quality change in dam reservoir and shallow aquifer: analysis on trend, seasonal variability and data reduction

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Change of water quality in dam reservoir and aquifer complicates safe drinking water supply. Few parameters are monitored to control water quality in these sources. Adequate knowledge on the correlation structure, interaction effect, trends and seasonal variability of these parameters is essential to control water quality. This study applied time series and multivariate analyses on 15 water quality parameters, collected from the King Fahd dam reservoir (L1) and aquifer (L2) in Saudi Arabia during April 2010 to February 2012. Moderate to strong correlations were observed between sulfate, hardness, fluoride, chloride, magnesium, conductivity, turbidity and total dissolved solids (TDS), while separate clusters were visible for TDS-chloride-magnesium-conductivity; fluoride-turbidity; chloride-hardness; ammonia-nitrate; and calcium-magnesium-hardness. Four major principal components explained 81.1 % and 83.2 % of the overall variances in L1 and L2, respectively. The factor analysis showed that 53 % and 67 % of the data were necessary to explain 81.3 % and 83.2 % of total variances for L1 and L2, respectively, indicating the possibility of data reduction. Possible degradation of water quality in these sources was highlighted, while such degradation may require enhanced treatment for producing drinking water in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdul-Wahab, S. A., Bakheit, C. S., & Al-Alawi, S. M. (2005). Principal component and multiple regression analysis in modelling of ground-level ozone and parameters affecting its concentrations. Environmental Modelling & Software, 20(10), 1263–1271.

    Article  Google Scholar 

  • Adams, S., Titus, R., Pietesen, K., Tredoux, G., & Harris, C. (2001). Hydrochemical characteristic of aquifers near Sutherland in the Western Karoo, South Africa. Journal of Hydrology, 241, 91–103.

    Article  CAS  Google Scholar 

  • Bengrane, K., & Marhaba, T. F. (2003). Using principal component analysis to monitor spatial and temporal changes in water quality. Journal of Hazardous Materials, 100, 179–195.

    Article  Google Scholar 

  • Bricker, O. P., & Jones, B. F. (1995). Main parameters affecting the composition of natural waters. In B. Salbu & E. Steinnes (Eds.), Trace elements in natural waters (pp. 1–5). Boca Raton: CRC Press.

    Google Scholar 

  • Brumelis, G., Lapina, L., Nikodemus, O., & Tabors, G. (2000). Use of an artificial model of monitoring data to aid interpretation of principal component analysis. Environmental Modelling & Software, 15(8), 755–763.

    Article  Google Scholar 

  • Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 83, 559–568.

    Article  Google Scholar 

  • Chowdhury, S., & Al-Zahrani, M. (2013). Characterizing water resources and the trends of sector wise water consumptions in Saudi Arabia. Journal of King Saud University–Engineering Sciences. doi:10.1016/j.jksues.2013.02.002.

    Google Scholar 

  • Chowdhury, S., Champagne, P., & Husain, T. (2007). Fuzzy risk-based decision-making approach for selection of drinking water disinfectants. Journal of Water Supply Research and Technology, 56(2), 75–93.

    Article  CAS  Google Scholar 

  • Chowdhury, S., Champagne, P., & McLellan, P. J. (2008). Parameters influencing formation of Trihalomethanes in drinking water: results from multivariate statistical investigation of the Ontario Drinking Water Surveillance Program database. Water Quality Research Journal of Canada, 43(2/3), 189–199.

    CAS  Google Scholar 

  • Dixon, W., & Chiswell, B. (1996). Review of aquatic monitoring program design. Water Research, 30, 1935–1948.

    Article  CAS  Google Scholar 

  • Evans, C. D., Monteith, D. T., & Cooper, D. M. (2005). Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts. Environmental Pollution, 137, 55–71.

    Article  CAS  Google Scholar 

  • HACH 2012. The list if parameters and methods. Available at: http://www.hach.com/browse.by.parameter-list.jsa.

  • Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M., & Fernandez, L. (2000). Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Research, 34, 807–816.

    Article  CAS  Google Scholar 

  • Hon, R., Constantin, A., Xian, Q. 2006. Statistical analysis of surface water quality data of eastern Massachusetts. 2006 Philadelphia Annual Meeting, Paper No: 179–9.

  • Jackson, J. E. (1991). A user guide to principal components. New York, USA: John Wiley and Sons.

    Book  Google Scholar 

  • Jarvie, H. P., Whitton, B. A., & Neal, C. (1998). Nitrogen and phosphorus in east-coast British rivers: speciation, sources and biological significance. Science of the Total Environment, 210(211), 79–109.

    Article  Google Scholar 

  • Lee, J. Y., Cheon, J. Y., Lee, K. K., Lee, S. Y., & Lee, M. H. (2001). Statistical evaluation of geochemical parameter distribution in a ground water system contaminated with petroleum hydrocarbons. Journal of Environmental Quality, 30, 1548–1563.

    Article  CAS  Google Scholar 

  • Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Science of the Total Environment, 313, 77–89.

    Article  CAS  Google Scholar 

  • Love, D., Hallbauer, D., Amos, A., & Hranova, R. (2004). Factor analysis as a tool in groundwater quality management: two southern African case studies. Physics and Chemistry of the Earth, 29, 1135–1143.

    Article  Google Scholar 

  • MOEP (The Ministry of Economy and Planning) (2010) The Ninth Development Plan (2010–2014), The Kingdom of Saudi Arabia.

  • Monteith, D. T., Stoddard, J. L., Evans, C. D., de Wit, H. A., Forsius, M., Høgasen, T., et al. (2007). Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 450, 537–541. doi:10.1038/nature06316.

    Article  CAS  Google Scholar 

  • MOWE (Ministry of Water and Electricity) (2011) Kingdom of Saudi Arabia: dams. Available at: http://intranet.mowe.gov.sa/Dams/.

  • Mrklas, O., Bentley, L., Lunn, S., & Chu, A. (2006). Principal Component Analyses of groundwater chemistry data during enhanced bioremediation. Water, Air, and Soil Pollution, 169, 395–411.

    Article  CAS  Google Scholar 

  • Prathumratana, L., Sthiannopkao, S., & Kim, K. W. (2008). The relationship of climatic and hydrological parameters to surface water quality in the lower Mekong River. Environment International, 34, 860–866.

    Article  CAS  Google Scholar 

  • Praus, P. (2005). Water quality assessment using SVD-based principal component analysis of hydrological data. Water SA, 31(4) (Online version).

  • Qadir, A., Malik, R. N., & Husain, S. Z. (2007). Spatio–temporal variations in water quality of Nullah Aik-tributary of the river Chenab, Pakistan. Environmental Monitoring and Assessment, 140, 43–59.

    Article  Google Scholar 

  • Rao, S. N., Devadas, D. J., & Rao, K. V. S. (2006). Interpretation of groundwater quality using principal component analysis from Anantapur district, Andhra Pradesh, India. Environmental Geosciences, 13, 239–259.

    Article  Google Scholar 

  • Reghunath, R., Murthy, T. R. S., & Raghavan, B. R. (2002). The utility of multivariate statistical techniques in hydrogeochemical studies: an example from Karnataka, India. Water Research, 36, 2437–2442.

    Article  CAS  Google Scholar 

  • Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji River basin, Japan. Environmental Modelling and Software, 22, 464–475.

    Article  Google Scholar 

  • Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., et al. (2003). Assessment of the surface water quality in Northern Greece. Water Research, 37, 4119–4124.

    Article  CAS  Google Scholar 

  • Simeonov, V., Simeonova, P., & Tsitouridou, R. (2004). Chemometric quality assessment of surface waters: two case studies. Chemical and Engineering Ecology, 11(6), 449–469.

    CAS  Google Scholar 

  • Simeonova, P., Simeonov, V., & Andreev, G. (2003). Environmetric analysis of the Struma River water quality. Central European Journal of Chemistry, 2, 121–126.

    Article  Google Scholar 

  • Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India): a case study. Water Research, 38, 3980–3992.

    Article  CAS  Google Scholar 

  • Singh, K. P., Malik, A., & Sinha, S. (2005). Water quality assessment and apportionment of pollution sources of Gomti River (India) using multivariate statistical techniques: a case study. Analytica Chimica Acta, 538, 355–374.

    Article  CAS  Google Scholar 

  • Smith, L. I. (2002). A tutorial on Principal component analysis (Access online on Oct 22, 2007). Available from: http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf.

    Google Scholar 

  • Varol, M., & Şen, B. (2009). Assessment of surface water quality using multivariate statistical techniques: a case study of Behrimaz Stream, Turkey. Environmental Monitoring and Assessment, 159, 543–553.

    Article  CAS  Google Scholar 

  • Varol, M., Gökot, B., Bekleyen, A., & Şen, B. (2012). Spatial and temporal variations in surface water quality of the dam reservoirs in the Tigris River basin, Turkey. Catena, 92, 11–21.

    Article  CAS  Google Scholar 

  • Vega, M., Pardo, R., Barrado, E., & Deban, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 32, 3581–3592.

    Article  CAS  Google Scholar 

  • WHO. (2011). Guidelines for drinking water quality (4th ed.). Geneva: World Health Organization.

    Google Scholar 

  • Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2, 37–52.

    Article  CAS  Google Scholar 

  • Wunderlin, D. A., Diaz, M. P., Ame, M. V., Pesce, S. F., Hued, A. C., & Bistoni, M. A. (2001). Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquia River basin (Cordoba, Argentina). Water Research, 35, 2881–2894.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support provided by the Deanship of Scientific Research (DSR) at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through project No. RG 1118-1 and RG 1118-2. The assistance of Bisha dam authority to obtain the data is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shakhawat Chowdhury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, S., Al-Zahrani, M. Water quality change in dam reservoir and shallow aquifer: analysis on trend, seasonal variability and data reduction. Environ Monit Assess 186, 6127–6143 (2014). https://doi.org/10.1007/s10661-014-3844-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3844-0

Keywords

Navigation