Skip to main content
Log in

Revisiting Stress Propagation in a Two-Dimensional Elastic Circular Disk Under Diametric Loading

  • Research
  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

In this paper, we present a comprehensive investigation of stress propagation in a two-dimensional elastic circular disk. To accurately describe the displacements and stress fields within the disk, we employ a scalar and vector potential approach, representing them as sums of Bessel functions. The determination of the coefficients for these expansions is accomplished in the Laplace space, where we compare the boundary conditions. By converting the inverse Laplace transforms into complex integrals using residue calculus, we successfully derive explicit expressions for the displacements and stress fields. Notably, these expressions encompass primary, secondary, and surface waves, providing a thorough characterization of the stress propagation phenomena within the disk. Our findings contribute to the understanding of mechanical behavior in disk-shaped components and can be valuable in the design and optimization of such structures across various engineering disciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity, 3rd edn. McGraw-Hill, New York (1970)

    Google Scholar 

  2. Fung, Y.C., Tong, P.: Classical and Computational Solid Mechanics, vol. 1. World Scientific, Singapore (2001)

    Google Scholar 

  3. Aki, K., Richards, P.G.: Quantitative Seismology. University Science Books, Sausalito (2002)

    Google Scholar 

  4. Guerrero-Miguel, D.J., Álvarez-Fernández, M.I., García-Fernández, C.C., González-Nicieza, C., Menéndez-Fernández, C.: Analytical and numerical stress field solutions in the Brazilian test subjected to radial load distributions and their stress effects at the centre of the disk. J. Eng. Math. 116, 29 (2019)

    Article  MathSciNet  Google Scholar 

  5. Ramesh, K., Sasikumar, S.: Digital photoelasticity: recent developments and diverse applications. Opt. Lasers Eng. 135, 106186 (2020)

    Article  Google Scholar 

  6. Ramesh, K., Shins, K.: Stress field equations for a disk subjected to self-equilibrated arbitrary loads: revisited. Granul. Matter 24(2), 49 (2022)

    Article  Google Scholar 

  7. Shins, K., Ramesh, K.: Closed-form displacement field equations for a disc subjected to self-equilibrated arbitrary loads. Granul. Matter 25(2), 38 (2023)

    Article  Google Scholar 

  8. Hung, K.M., Ma, C.C.: Technical note: theoretical analysis and digital photoelastic measurement of circular disks subjected to partially distributed compressions. Exp. Mech. 43, 216 (2003)

    Google Scholar 

  9. Schönert, K.: Breakage of spheres and circular discs. Powder Technol. 143, 2 (2004)

    Article  Google Scholar 

  10. Ma, C.C., Hung, K.M.: Exact full-field analysis of strain and displacement for circular disks subjected to partially distributed compressions. Int. J. Mech. Sci. 50(2), 275 (2008)

    Article  Google Scholar 

  11. Hua, T., Van Gorder, R.A.: Wave propagation and pattern formation in two-dimensional hexagonally-packed granular crystals under various configurations. Granul. Matter 21(1), 3 (2019)

    Article  Google Scholar 

  12. Landau, L.D., Lifšic, E.M., Lifshitz, E.M., Kosevich, A.M., Pitaevskii, L.P.: Theory of Elasticity, vol. 7. Elsevier, Amsterdam (1986)

    Google Scholar 

  13. Frocht, M.M.: Photoelasticity, vol. 2. Wiley, New York (1941)

    Google Scholar 

  14. Coker, E.G., Filon, L.N.G.: A Treatise on Photo-Elasticity, 2nd edn. Cambridge University Press, Cambridge (1957)

    Google Scholar 

  15. Wang, S., Sloan, S., Tang, C.: Three-dimensional numerical investigations of the failure mechanism of a rock disc with a central or eccentric hole. Rock Mech. Rock Eng. 47, 2117 (2014)

    Article  Google Scholar 

  16. Jiang, Y., Alonso-Marroquín, F., Herrmann, H.J., Mora, P.: Particle fragmentation based on strain energy field. Granul. Matter 22, 1 (2020)

    Article  Google Scholar 

  17. Wu, S., Chau, K.T.: Dynamic response of an elastic sphere under diametral impacts. Mech. Mater. 38(11), 1039 (2006)

    Article  Google Scholar 

  18. Jingu, T., Hisada, K., Nakahara, I., Machida, S.: Transient stress in a circular disk under diametrical impact loads. Bull. JSME 28(235), 13 (1985)

    Article  Google Scholar 

  19. Jingu, T., Nezu, K.: Transient stress in an elastic sphere under diametrical concentrated impact loads. Bull. JSME 28(245), 2553 (1985)

    Article  Google Scholar 

  20. Kessler, D., Kosloff, D.: Elastic wave propagation using cylindrical coordinates. Geophysics 56(12), 2080 (1991)

    Article  Google Scholar 

  21. Hua, W., Xu, J., Dong, S., Song, J., Wang, Q.: Effect of confining pressure on stress intensity factors for cracked Brazilian disk. Int. J. Appl. Mech. 7(03), 1550051 (2015)

    Article  Google Scholar 

  22. Mazel, V., Guerard, S., Croquelois, B., Kopp, J.B., Girardot, J., Diarra, H., Busignies, V., Tchoreloff, P.: Reevaluation of the diametral compression test for tablets using the flattened disc geometry. Int. J. Pharm. 513(1–2), 669 (2016)

    Article  Google Scholar 

  23. Liu, Q., Xin, X., Ma, J., Wang, Y.: Simulating quasi-static crack propagation by coupled peridynamics least square minimization with finite element method. Eng. Fract. Mech. 252, 107862 (2021)

    Article  Google Scholar 

  24. Yu, Y., Yin, J., Zhong, Z.: Shape effects in the Brazilian tensile strength test and a 3D FEM correction. Int. J. Rock Mech. Min. Sci. 43(4), 623 (2006)

    Article  Google Scholar 

  25. Kourkoulis, S., Markides, C.F., Chatzistergos, P.: The Brazilian disc under parabolically varying load: theoretical and experimental study of the displacement field. Int. J. Solids Struct. 49(7–8), 959 (2012)

    Article  Google Scholar 

  26. Zhang, H., Nath, F., Parrikar, P.N., Mokhtari, M.: Analyzing the validity of Brazilian testing using digital image correlation and numerical simulation techniques. Energies 13(6), 1441 (2020)

    Article  Google Scholar 

  27. Abramowitz, M., Stegun, I.A.: Graphs, and Mathematical Tables. Dover Publications, New York (1965)

    Google Scholar 

  28. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes 3rd Edition: The Art of Scientific Computing Cambridge University Press, Cambridge (2007)

    Google Scholar 

  29. Goodman, R.E.: Introduction to Rock Mechanics. Wiley, New York (1991)

    Google Scholar 

  30. Vutukuri, V.S., Lama, R.D., Saluja, S.S.: Handbook on Mechanical Properties of Rocks: Testing Techniques and Results. Trans Tech Publications, Clausthal (1974)

    Google Scholar 

  31. See also the supplemental movie. The time evolution of the dimensionless principal stress difference is visualized

Download references

Acknowledgements

The authors thank Hisao Hayakawa, Takashi Matsushima, Michio Otsuki, and Kenji Kurosaki for their helpful comments. Numerical computation in this work was partially carried out at the Yukawa Institute Computer Facility.

Funding

This research was partially supported by the Grant-in-Aid of MEXT for Scientific Research (Grant No. JP20K14428 and No. JP21H01006).

Author information

Authors and Affiliations

Authors

Contributions

Y.S. and S.T. wrote the main manuscript text. H.I. started the preliminary analysis and Y.S. got the final results. Y.S. mainly prepared all figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Satoshi Takada.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Derivation of Eq. (22a)–(22e)

In this Appendix, let us give the detailed derivations of the expressions of the static values (22a)–(22e). Because we are only interested in the static values, we omit \(\lim _{t\to \infty}\) in Eq. (20a)–(20e) in this Appendix. Now, we focus on \(\widetilde{\sigma}_{rr}^{(m)}\). To calculate the summation \(\sum _{m=2,4,\ldots}\widetilde{\sigma}_{rr}^{(m)}\cos (m\theta )\), it is convenient to use the following identity:

$$\begin{aligned} \sum _{m=2,4,\ldots}r^{*m}\cos (m\theta ) &= \Re \sum _{m=2,4,\ldots}r^{*m} \mathrm{e}^{im\theta} = \Re \frac{1}{1-r^{*2}e^{2i\theta}} \\ &= \Re \frac{1}{r_{1}^{*}r_{2}^{*}}\mathrm{e}^{i(\theta _{1}-\theta _{2})} = \frac{1}{r_{1}^{*}r_{2}^{*}}\cos (\theta _{1}-\theta _{2}), \end{aligned}$$
(38)

where \(\Re \) represents the real part, and we have introduced \(r_{1}\), \(r_{2}\), \(\theta _{1}\), and \(\theta _{2}\) as shown in Fig. 1 in the second line of Eq. (38). From this identity, the following is also obtained:

$$\begin{aligned} \sum _{m=2,4,\ldots}m r^{*m}\cos (m\theta ) &= \Re \frac{2r^{*2}e^{2i\theta}}{\left (1-r^{*2}e^{2i\theta}\right )^{2}} = \Re \frac{2r^{*2}}{r_{1}^{*2}r_{2}^{*2}}\mathrm{e}^{2i(\theta + \theta _{1}-\theta _{2})} \\ &= \frac{2r^{*2}}{r_{1}^{*2}r_{2}^{*2}}\cos [2(\theta + \theta _{1}- \theta _{2})]. \end{aligned}$$
(39)

Using Eqs. (38) and (39), one gets

$$ \sum _{m=2,4,\ldots}\widetilde{\sigma}_{rr}^{(m)}\cos (m\theta ) = 1- \frac{\left (1-r^{*2}\right )^{2}\left [1-2r^{*2}-r^{*4}+2\cos (2\theta )\right ]}{\left [1+r^{*4}-2r^{*2}\cos (2\theta )\right ]^{2}}. $$
(40)

Now, from the definition of \(r^{*1}\), \(r^{*2}\), \(\theta _{1}\), and \(\theta _{2}\) in Eqs. (23a)–(23b), we can easily obtain

$$\begin{aligned} &\frac{\cos \theta _{1} \cos ^{2}(\theta +\theta _{1})}{r_{1}^{*}} + \frac{\cos \theta _{2} \cos ^{2}(\theta -\theta _{2})}{r_{2}^{*}} - \frac{1}{2} \end{aligned}$$
(41)
$$\begin{aligned} &\quad = \frac{\left (1-r^{*2}\right )^{2}\left [1-2r^{*2}-r^{*4}+2\cos (2\theta )\right ]}{2\left [1+r^{*4}-2r^{*2}\cos (2\theta )\right ]^{2}}. \end{aligned}$$
(42)

From Eqs. (40) and (42) with Eq. (21a), we can reach Eq. (22c). After the similar calculations, we can also derive Eqs. (22a)–(22e).

Appendix B: Stress Components in the Cartesian Coordinates

In this Appendix, we present the expressions of the stress components in the Cartesian coordinates. Once we obtain the expressions in the polar coordinates, it is straightforward to obtain those in the Cartesian coordinates as [1]

$$\begin{aligned} \widetilde{\sigma}_{xx} &= \frac{\widetilde{\sigma}_{rr}+\widetilde{\sigma}_{\theta \theta}}{2} + \frac{\widetilde{\sigma}_{rr}-\widetilde{\sigma}_{\theta \theta}}{2} \cos (2\theta ) - \widetilde{\sigma}_{r\theta}\sin (2\theta ), \end{aligned}$$
(43a)
$$\begin{aligned} \widetilde{\sigma}_{yy} &= \frac{\widetilde{\sigma}_{rr}+\widetilde{\sigma}_{\theta \theta}}{2} - \frac{\widetilde{\sigma}_{rr}-\widetilde{\sigma}_{\theta \theta}}{2} \cos (2\theta ) + \widetilde{\sigma}_{r\theta}\sin (2\theta ), \end{aligned}$$
(43b)
$$\begin{aligned} \widetilde{\sigma}_{xy} &= \widetilde{\sigma}_{r\theta}\cos (2\theta ) + \frac{\widetilde{\sigma}_{rr}-\widetilde{\sigma}_{\theta \theta}}{2} \sin (2\theta ). \end{aligned}$$
(43c)

Substituting Eqs. (22a)–(22e) into Eqs. (43a)–(43c), we can obtain

$$\begin{aligned} \widetilde{\sigma}_{xx} &= 1 -\left ( \frac{2\cos ^{3}\theta _{1}}{r_{1}} + \frac{2\cos ^{3}\theta _{2}}{r_{2}}\right ), \end{aligned}$$
(44a)
$$\begin{aligned} \widetilde{\sigma}_{yy} &= 1 - \left ( \frac{2\cos \theta _{1} \sin ^{2}\theta _{1}}{r_{1}} + \frac{2\cos \theta _{2} \sin ^{2}\theta _{2}}{r_{2}}\right ), \end{aligned}$$
(44b)
$$\begin{aligned} \widetilde{\sigma}_{xy} &= \frac{2\cos ^{2}\theta _{1} \sin \theta _{1}}{r_{1}} - \frac{2\cos ^{2}\theta _{2} \sin \theta _{2}}{r_{2}}, \end{aligned}$$
(44c)

respectively [1]. This shows that \(\widetilde{\sigma}_{yy}\) becomes constant (\(\widetilde{\sigma}_{yy}=1\)) along the line parallel to the loading (\(\theta _{1}=\theta _{2}=0\)).

Appendix C: Derivation of the Speed of the Rayleigh Wave

In this Appendix, we derive the speed of the Rayleigh wave. The Rayleigh waves are produced by P- and S-waves, and propagate over the surface of the disk. Let \(c\) be the speed of the Rayleigh wave. Now, it is convenient to have the origin on the surface of the disc, that is,

$$ r^{\prime }\equiv r-a, $$
(45)

and use the coordinate system \((r^{\prime}, \theta )\). Then, we assume that both the scalar and vector potentials are described by

$$\begin{aligned} \phi &= \mathcal{A}_{\mathrm{L}}(r^{\prime}) \exp \left [i\omega \left (t-\frac{a\theta}{c}\right )\right ], \end{aligned}$$
(46a)
$$\begin{aligned} A &= \mathcal{A}_{\mathrm{T}}(r^{\prime}) \exp \left [i\omega \left (t- \frac{a\theta}{c}\right )\right ], \end{aligned}$$
(46b)

respectively. Substituting Eq. (46a) into the wave equation, the amplitude \(\mathcal{A}_{\mathrm{L}}\) should satisfy

$$\begin{aligned} \frac{\partial ^{2} \mathcal{A}_{\mathrm{L}}(r^{\prime})}{\partial r^{\prime 2}} +\frac{1}{a} \frac{\partial \mathcal{A}_{\mathrm{L}}(r^{\prime})}{\partial r^{\prime}} -\mathcal{A}_{\mathrm{L}}(r^{\prime}) \frac{\omega ^{2}}{c^{2} c_{\mathrm{L}}^{2}}(c_{\mathrm{L}}^{2}-c^{2}) = 0. \end{aligned}$$
(47)

We should choose a solution, which does not diverge for \(r\ll 0\). After this choice, the scalar potential is written as

$$ \phi = C_{1} \exp \left [\frac{r^{\prime}}{2a}\left (\sqrt{1+4a^{2} \frac{\omega ^{2}}{c^{2} c_{\mathrm{L}}^{2}}(c_{\mathrm{L}}^{2}-c^{2})}-1 \right )\right ]\exp (i\omega t)\exp \left (- \frac{i\omega a\theta}{c}\right ). $$
(48)

Similarly, the vector potential is given by

$$ A = C_{2} \exp \left [\frac{r^{\prime}}{2a}\left (\sqrt{1+4a^{2} \frac{\omega ^{2}}{c^{2} c_{\mathrm{T}}^{2}}(c_{\mathrm{T}}^{2}-c^{2})}-1 \right )\right ]\exp (i\omega t)\exp \left (- \frac{i\omega a\theta}{c}\right ), $$
(49)

where \(C_{1}\) and \(C_{2}\) are constants. If the second terms in the root of Eqs. (46a) and (49) is much smaller than unity, we can rewrite them as

$$\begin{aligned} \phi &= C_{1} \exp \left [r^{\prime }a\left (\frac{\omega}{c}\right )^{2} \left (1-\frac{c^{2}}{c_{\mathrm{L}}^{2}}\right )\right ]\exp (i \omega t)\exp \left (-\frac{i\omega a\theta}{c}\right ), \end{aligned}$$
(50a)
$$\begin{aligned} A &= C_{2} \exp \left [r^{\prime }a\left (\frac{\omega}{c}\right )^{2} \left (1-\frac{c^{2}}{c_{\mathrm{T}}^{2}}\right )\right ]\exp (i \omega t)\exp \left (-\frac{i\omega a\theta}{c}\right ). \end{aligned}$$
(50b)

This solution needs to satisfy the boundary condition (1a)–(1b). After some calculations, the quantity \(X\equiv c^{2}/c_{\mathrm{T}}^{2}\) should satisfy the following equation:

$$ X\left (X^{3} - 8X^{2} + 8(2+\nu )X-8(1+\nu ) \right )=0. $$
(51)

This is nothing but Eq. (35) in the main text.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, Y., Ishikawa, H. & Takada, S. Revisiting Stress Propagation in a Two-Dimensional Elastic Circular Disk Under Diametric Loading. J Elast (2024). https://doi.org/10.1007/s10659-023-10047-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10659-023-10047-4

Keywords

Mathematics Subject Classification

Navigation