Skip to main content
Log in

A Linear Isotropic Cosserat Shell Model Including Terms up to \(O(h^{5})\). Existence and Uniqueness

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

In this paper we derive the linear elastic Cosserat shell model incorporating in the variational problem effects up to order \(O(h^{5})\) in the shell thickness \(h\) as a particular case of the recently introduced geometrically nonlinear elastic Cosserat shell model. The existence and uniqueness of the solution is proven in suitable admissible sets. To this end, inequalities of Korn-type for shells are established which allow to show coercivity in the Lax-Milgram theorem. We are also showing an existence and uniqueness result for a truncated \(O(h^{3})\) model. Main issue is the suitable treatment of the curved reference configuration of the shell. Some connections to the classical Koiter membrane-bending model are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. These conditions are equivalent to \(\mu >0\) and \(2\,\lambda +\mu > 0\).

  2. Here, we have used that, since , for all \(X\in \mathbb{R}^{3\times 3}\) it holds \(\lVert X^{\perp}\rVert ^{2}=\lVert X^{T}\,n_{0}\rVert ^{2} \).

References

  1. Acharya, A.: A nonlinear generalization of the Koiter–Sanders–Budiansky bending strain measure. Int. J. Solids Struct. 37(39), 5517–5528 (2000)

    MATH  Google Scholar 

  2. Adams, R.A.: Sobolev Spaces, 1. edn. Pure and Applied Mathematics, vol. 65. Academic Press, London (1975)

    MATH  Google Scholar 

  3. Aganović, I., Tambača, J., Tutek, Z.: Derivation and justification of the model of micropolar elastic shells from three-dimensional linearized micropolar elasticity. Asymptot. Anal. 51, 335–361 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Altenbach, H., Zhilin, P.A.: A general theory of elastic simple shells. Usp. Mekh. 11, 107–148 (1988) (in Russian)

    MathSciNet  Google Scholar 

  5. Altenbach, H., Zhilin, P.A.: The theory of simple elastic shells. In: Kienzler, R., Altenbach, H., Ott, I. (eds.) Theories of Plates and Shells. Critical Review and New Applications. Euromech Colloquium, vol. 444, pp. 1–12. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  6. Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80, 73–92 (2010)

    MATH  Google Scholar 

  7. Anicic, S., Léger, A.: Formulation bidimensionnelle exacte du modèle de coque 3D de Kirchhoff-Love. C. R. Acad. Sci. Paris, Ser. I Math. 329(8), 741–746 (1999)

    MathSciNet  MATH  Google Scholar 

  8. Bîrsan, M.: On Saint-Venant’s principle in the theory of Cosserat elastic shells. Int. J. Eng. Sci. 45, 187–198 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Bîrsan, M.: Inequalities of Korn’s type and existence results in the theory of Cosserat elastic shells. J. Elast. 90, 227–239 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Bîrsan, M.: Thermal stresses in cylindrical Cosserat elastic shells. Eur. J. Mech. A, Solids 28, 94–101 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Bîrsan, M.: Alternative derivation of the higher-order constitutive model for six-parameter elastic shells. Z. Angew. Math. Phys. 72, 1–29 (2021)

    MathSciNet  MATH  Google Scholar 

  12. Bîrsan, M., Altenbach, H.: A mathematical study of the linear theory for orthotropic elastic simple shells. Math. Methods Appl. Sci. 33, 1399–1413 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Bîrsan, M., Altenbach, H.: On the dynamical theory of thermoelastic simple shells. Z. Angew. Math. Mech. 91, 443–457 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Bîrsan, M., Neff, P.: Existence of minimizers in the geometrically non-linear 6-parameter resultant shell theory with drilling rotations. Math. Mech. Solids 19(4), 376–397 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Bîrsan, M., Neff, P.: Shells without drilling rotations: a representation theorem in the framework of the geometrically nonlinear 6-parameter resultant shell theory. Int. J. Eng. Sci. 80, 32–42 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Blouza, A., Le Dret, H.: Existence and uniqueness for the linear Koiter model for shells with little regularity. Q. Appl. Math. 57(2), 317–337 (1999)

    MathSciNet  MATH  Google Scholar 

  17. Chróścielewski, J., Makowski, J., Pietraszkiewicz, W.: Statics and Dynamics of Multifold Shells: Nonlinear Theory and Finite Element Method. Wydawnictwo IPPT PAN, Warsaw (2004) (in Polish)

    Google Scholar 

  18. Chróścielewski, J., Pietraszkiewicz, W., Witkowski, W.: On shear correction factors in the non-linear theory of elastic shells. Int. J. Solids Struct. 47, 3537–3545 (2010)

    MATH  Google Scholar 

  19. Ciarlet, Ph.G.: Introduction to Linear Shell Theory, 1st edn. Series in Applied Mathematics. Gauthier-Villars, Paris (1998)

    MATH  Google Scholar 

  20. Ciarlet, Ph.G.: Mathematical Elasticity, Vol. III: Theory of Shells, 1st edn. North-Holland, Amsterdam (2000)

    MATH  Google Scholar 

  21. Ciarlet, Ph.G.: An Introduction to Differential Geometry with Applications to Elasticity. Springer, Berlin (2005)

    MATH  Google Scholar 

  22. Ciarlet, Ph.G.: An introduction to differential geometry with applications to elasticity. J. Elast. 78(1–3), 1–215 (2005)

    MathSciNet  MATH  Google Scholar 

  23. Cosserat, E., Cosserat, F.: Sur la théorie des corps minces. C. R. Acad. Sci. 146, 169–172 (1908)

    MATH  Google Scholar 

  24. Cosserat, E., Cosserat, F.: Théorie des corps déformables. Hermann et Fils, Paris (1909) (reprint 2009)

    MATH  Google Scholar 

  25. Davini, C.: Existence of weak solutions in linear elastostatics of Cosserat surfaces. Meccanica 10, 225–231 (1975)

    MATH  Google Scholar 

  26. Eremeyev, V.A., Lebedev, L.P.: Existence theorems in the linear theory of micropolar shells. Z. Angew. Math. Mech. 91, 468–476 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Eremeyev, V.A., Pietraszkiewicz, W.: Local symmetry group in the general theory of elastic shells. J. Elast. 85, 125–152 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Ghiba, I.D., Neff, P.: Linear constrained Cosserat-shell models including terms up to \({O}(h^{5}) \). Conditional and unconditional existence and uniqueness (2022). arXiv preprint. arXiv:2211.12074

  29. Ghiba, I.D., Bîrsan, M., Lewintan, P., Neff, P.: The isotropic Cosserat shell model including terms up to \({O}(h^{5})\). Part I: derivation in matrix notation. J. Elast. 142, 201–262 (2020)

    MATH  Google Scholar 

  30. Ghiba, I.D., Bîrsan, M., Lewintan, P., Neff, P.: The isotropic elastic Cosserat shell model including terms up to order \(O(h^{5})\) in the shell thickness. Part II: existence of minimizers. J. Elast. 142, 263–290 (2020)

    MATH  Google Scholar 

  31. Ghiba, I.D., Bîrsan, M., Lewintan, P., Neff, P.: A constrained Cosserat-shell model including terms up to \({O}(h^{5})\). J. Elast. 146(1), 83–141 (2021)

    MATH  Google Scholar 

  32. Ghiba, I.D., Lewintan, P., Neff, P.: On the deformation measures in shell models (2022). In preparation

  33. Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier-Stokes Equations Lect. Notes Math., vol. 749. Springer, Heidelberg (1979)

    MATH  Google Scholar 

  34. Green, A.E., Naghdi, P.M.: Shells in the light of generalized Cosserat continua. In: Niordson, F.I. (ed.) Theory of Thin Shells, IUTAM Symposium Copenhagen 1967, pp. 39–58. Springer, Heidelberg (1969)

    Google Scholar 

  35. Leis, R.: Initial Boundary Value Problems in Mathematical Physics. Teubner, Stuttgart (1986)

    MATH  Google Scholar 

  36. Libai, A., Simmonds, J.G.: The Nonlinear Theory of Elastic Shells, 2nd edn. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  37. Naghdi, P.M.: The theory of shells and plates. In: Flügge, S. (ed.) Handbuch der Physik, Mechanics of Solids, vol. VI a/2, pp. 425–640. Springer, Berlin (1972)

    Google Scholar 

  38. Naghdi, P.M., Rubin, M.B.: Restrictions on nonlinear constitutive equations for elastic shells. J. Elast. 39, 133–163 (1995)

    MathSciNet  MATH  Google Scholar 

  39. Neff, P.: A geometrically exact Cosserat-shell model including size effects, avoiding degeneracy in the thin shell limit. Part I: formal dimensional reduction for elastic plates and existence of minimizers for positive Cosserat couple modulus. Contin. Mech. Thermodyn. 16, 577–628 (2004)

    MathSciNet  MATH  Google Scholar 

  40. Neff, P., Chelminski, K.: A geometrically exact Cosserat shell-model for defective elastic crystals. Justification via \(\Gamma \)-convergence. Interfaces Free Bound. 9, 455–492 (2007)

    MathSciNet  MATH  Google Scholar 

  41. Pietraszkiewicz, W.: Consistent second approximation to the elastic strain energy of a shell. Z. Angew. Math. Mech. 59, 206–208 (1979)

    MathSciNet  MATH  Google Scholar 

  42. Pietraszkiewicz, W.: Finite Rotations and Langrangian Description in the Non-linear Theory of Shells. Polish Sci. Publ., Warsaw-Poznań (1979)

    MATH  Google Scholar 

  43. Pietraszkiewicz, W.: Refined resultant thermomechanics of shells. Int. J. Eng. Sci. 49, 1112–1124 (2011)

    MathSciNet  MATH  Google Scholar 

  44. Pietraszkiewicz, W., Eremeyev, V.A.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46, 774–787 (2009)

    MathSciNet  MATH  Google Scholar 

  45. Pietraszkiewicz, W., Konopińska, V.: Drilling couples and refined constitutive equations in the resultant geometrically non-linear theory of elastic shells. Int. J. Solids Struct. 51, 2133–2143 (2014)

    Google Scholar 

  46. Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 12, A69–A77 (1945)

    MathSciNet  MATH  Google Scholar 

  47. Rubin, M.B.: Cosserat Theories: Shells, Rods and Points. Kluwer Academic, Dordrecht (2000)

    MATH  Google Scholar 

  48. Saem, M.M., Ghiba, I.D., Neff, P.: A geometrically nonlinear Cosserat (micropolar) curvy shell model via Gamma convergence. J. Nonlinear Sci. (2022, in press). arXiv preprint. arXiv:2207.08541

  49. Šilhavỳ, M.: A new approach to curvature measures in linear shell theories. Math. Mech. Solids 26(9), 1241–1263 (2021)

    MathSciNet  Google Scholar 

  50. Steigmann, D.J.: Extension of Koiter’s linear shell theory to materials exhibiting arbitrary symmetry. Int. J. Eng. Sci. 51, 216–232 (2012)

    MathSciNet  MATH  Google Scholar 

  51. Steigmann, D.J.: Koiter’s shell theory from the perspective of three-dimensional nonlinear elasticity. J. Elast. 111, 91–107 (2013)

    MathSciNet  MATH  Google Scholar 

  52. Tambača, J.: A new linear shell model for shells with little regularity. J. Elast. 117, 163–188 (2014)

    MathSciNet  MATH  Google Scholar 

  53. Tambaća, J., Tutek, Z.: A new linear Naghdi type shell model for shells with little regularity. Appl. Math. Model. 40, 10549–10562 (2016)

    MathSciNet  MATH  Google Scholar 

  54. Zhilin, P.A.: Mechanics of deformable directed surfaces. Int. J. Solids Struct. 12, 635–648 (1976)

    MathSciNet  Google Scholar 

  55. Zhilin, P.A.: Applied Mechanics – Foundations of Shell Theory. State Polytechnical University Publisher, Sankt Petersburg (2006) (in Russian)

    Google Scholar 

Download references

Acknowledgements

This research has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project no. 415894848: NE 902/8-1 (P. Neff) and BI 1965/2-1 (M. Bîrsan). No funding source is specified for the other author.

Author information

Authors and Affiliations

Authors

Contributions

All authors had an equal contribution in determining the results and in writing the article.

Corresponding author

Correspondence to Ionel-Dumitrel Ghiba.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: The Classical Linear (First) Koiter Membrane-Bending Model

Appendix A: The Classical Linear (First) Koiter Membrane-Bending Model

According to [20, page 344], [22, page 154, ] in the linear (first) Koiter model, the variational problem is to find a midsurface displacement vector field \(v:\omega \subset \mathbb{R}^{2}\to \mathbb{R}^{3}\) minimizing:

$$\begin{aligned} \displaystyle \int _{\omega }&\bigg\{ h\bigg( \mu \rVert [\nabla \Theta ]^{-T} ( \mathcal{G}_{\mathrm{{Koiter}}}^{\mathrm{{lin}}})^{\flat }[\nabla \Theta ]^{-1} \rVert ^{2} +\dfrac{\,\lambda \,\mu}{\lambda +2\,\mu} \, \mathrm{tr} \Big[ [\nabla \Theta ]^{-T} (\mathcal{G}_{\mathrm{{Koiter}}}^{\mathrm{{lin}}})^{ \flat }[\nabla \Theta ]^{-1}\Big]^{2}\bigg) \vspace{6pt} \\ &+\displaystyle \frac{h^{3}}{12}\bigg( \mu \rVert [\nabla \Theta ]^{-T} \big( \mathcal{R}_{\mathrm{{Koiter}}}^{\mathrm{{lin}}}\big)^{\flat }[\nabla \Theta ]^{-1} \rVert ^{2} +\dfrac{\,\lambda \,\mu}{\lambda +2\,\mu} \, \mathrm{tr} \Big[ [\nabla \Theta ]^{-T} \big(\mathcal{R}_{\mathrm{{Koiter}}}^{\mathrm{{lin}}} \big)^{\flat }[\nabla \Theta ]^{-1}\Big]^{2}\bigg)\bigg\} \\ &\times \,{\mathrm{det}}( \nabla y_{0}|n_{0})\, {\mathrm{d}}a, \end{aligned}$$
(A.1)

where \((\mathcal{G}_{\mathrm{{Koiter}}}^{\mathrm{{lin}}})^{\flat }\) and \(\big(\mathcal{R}_{\mathrm{{Koiter}}}^{\mathrm{{lin}}}\big)^{\flat}\) are the lifted quantities of the strain measures [20] given by

$$ \mathcal{G}_{\mathrm{{Koiter}}}^{\mathrm{{lin}}} \,\,:=\frac{1}{2}\big[{\mathrm{I}}_{m} - {\mathrm{I}}_{y_{0}}\big]^{\mathrm{{lin}}}= \,\,\frac{1}{2}\;\big[ (\nabla y_{0})^{T}( \nabla v) + (\nabla v)^{T}(\nabla y_{0})\big] = {\mathrm {sym}}\big[ (\nabla y_{0})^{T}( \nabla v)\big] $$
(A.2)

and

$$\begin{aligned} \mathcal{R}_{\mathrm{{Koiter}}}^{\mathrm{{lin}}} \,\,:&= \,\, \big[{\mathrm{II}}_{m} - { \mathrm{II}}_{y_{0}}\big]^{\mathrm{{lin}}} \,= \Big( \bigl\langle n_{0} , \partial _{x_{\alpha }x_{\beta}}\,v- \displaystyle \sum _{\gamma =1,2}\Gamma ^{ \gamma}_{\alpha \beta}\,\partial _{x_{\gamma}}\,v\bigr\rangle a^{ \alpha}\,\Big)_{\alpha \beta}\in \mathbb{R}^{2\times 2}. \end{aligned}$$
(A.3)

The expression of \(\mathcal{R}_{\mathrm{{Koiter}}}^{\mathrm{{lin}}}\) involves the Christoffel symbols \(\Gamma ^{\gamma}_{\alpha \beta} \) on the surface given by \(\Gamma ^{\gamma}_{\alpha \beta}=\bigl\langle a^{\gamma}, \partial _{x_{ \alpha}} a_{\beta}\bigr\rangle =-\bigl\langle \partial _{x_{\alpha}} a^{ \gamma}, a_{\beta}\bigr\rangle =\Gamma ^{\gamma}_{\beta \alpha} \). Note that, using \(m=y_{0}+v\) and \((\nabla m)^{T}\nabla m=(\nabla y_{0})^{T}\nabla y_{0}+(\nabla y_{0})^{T} \nabla v+(\nabla v)^{T}\nabla y_{0}+\text{h.o.t}\in \mathbb{R}^{2 \times 2} \), the linear approximation of the difference \(\frac{1}{2}\big[{\mathrm{I}}_{m} - {\mathrm{I}}_{y_{0}}\big]^{\mathrm{{lin}}}\) appearing in the Koiter model can easily be obtained [20, page 92], the linear approximation of the difference \(\big[{\mathrm{II}}_{m} - {\mathrm{II}}_{y_{0}}\big]^{\mathrm{{lin}}}\) needs some more insights from differential geometry [20, page 95] and it is based on formulas of Gauß \(\partial _{x_{\alpha}} a_{\beta}= \sum _{\gamma =1,2}\Gamma _{\alpha \beta}^{\gamma }\,a_{\gamma}+b_{ \alpha \beta}a_{3}\) and \(\partial _{x_{\beta}}a^{\alpha }= - \sum _{\gamma =1,2}\Gamma ^{ \alpha}_{\gamma \beta}\,a^{\gamma }+ b^{\alpha}_{\beta}\, n_{0} \) and the formulas of Weingarten \(\partial _{x_{\alpha}} a_{3}=\partial _{x_{\alpha}} a^{3}= -\sum _{ \beta =1,2}b_{\alpha \beta}\, a^{\beta}=-\sum _{\beta =1,2} b^{\gamma}_{ \beta}\, a_{\gamma}\) together with the relations [20, page 76] \(b_{\alpha \beta}(m)=-\bigl\langle \partial _{\alpha }a_{3}(m), a_{ \beta}(m)\bigr\rangle =\bigl\langle \partial _{\alpha }a_{\beta}(m), a_{3}(m) \bigr\rangle =b_{\beta \alpha}(m) \), where \(b_{\alpha \beta}(m)\) are the components of the second fundamental form corresponding to the map \(m\), \(b_{\alpha}^{\beta}(m)\) are the components of the matrix associated to the Weingarten map (shape operator), and on the following linear approximation \(n=\,n_{0}+\frac{1}{\sqrt{\det ((\nabla y_{0})^{T}\nabla y_{0})}} \left (\partial _{x_{1}} y_{0}\times \partial _{x_{2}} v+\partial _{x_{1}} v\times \partial _{x_{2}} y_{0}+\text{h.o.t}\right ) -{\mathrm {tr}}(((\nabla y_{0})^{T} \nabla y_{0})^{-1}\, {\mathrm {sym}}((\nabla y_{0})^{T}\nabla v) )\,n_{0} \).

We note that other alternative forms of the change of metric tensor and the change of curvature tensor in [20, Page 181] are

$$ \mathcal{G}_{\mathrm{{Koiter}}}^{\mathrm{{lin}}} = \Big( \frac{1}{2}(\partial _{ \beta }v_{\alpha}+\partial _{\alpha }v_{\beta})-\sum _{\gamma =1,2} \Gamma _{\alpha \beta}^{\gamma }v_{\gamma}-b_{\alpha \beta}v_{3} \Big)_{\alpha \beta}\in \mathbb{R}^{2\times 2}, $$
(A.4)

and

$$\begin{aligned} \mathcal{R}_{\mathrm{{Koiter}}}^{\mathrm{{lin}}} &= \Big( \partial _{x_{\alpha }x_{ \beta}}v_{3}-\sum _{\gamma =1,2}\Gamma _{\alpha \beta}^{\gamma } \partial _{x_{\gamma}}v_{3}-\sum _{\gamma =1,2}b_{\alpha}^{\gamma }b_{ \gamma \beta}v_{3} \\ &\quad {}+\sum _{\gamma =1,2}b_{\alpha}^{\gamma}(\partial _{x_{ \beta}}v_{\gamma}-\sum _{\tau =1,2}\Gamma _{\beta \gamma}^{\tau }v_{ \tau}) +\sum _{\gamma =1,2}b_{\beta}^{\gamma}(\partial _{x_{\alpha}}v_{ \gamma}-\sum _{\tau =1,2}\Gamma _{\alpha \tau}^{\gamma }v_{\gamma}) \\ &\quad {}+ \sum _{\tau =1,2}(\partial _{x_{\alpha}}b_{\beta}^{\tau}+\sum _{ \gamma =1,2}\Gamma _{\alpha \gamma}^{\tau }b_{\beta}^{\gamma}-\sum _{ \gamma =1,2}\Gamma _{\alpha \beta}^{\gamma }b_{\gamma}^{\tau})v_{\tau} \Big)_{\alpha \beta}\in \mathbb{R}^{2\times 2}, \end{aligned}$$
(A.5)

respectively. Actually, on one hand, the last form of the curvature tensor will be considered when the admissible set of solutions of the variational problem will be defined. On the other hand, as noticed in [21, Page 175] by considering the form (A.3) of the change of metric tensor, we can impose substantially weaker regularity assumptions on the mapping \(y_{0}\). For the linear (first) Koiter model the existence results are given in [20, Theorem 7.1.-1 and Theorem 7.1.-2], see also [16].

While the relation between \(\mathcal{G}^{\mathrm{{lin}}}\) and \(\mathcal{G}_{\mathrm{{Koiter}}}^{\mathrm{{lin}}} \) holds in the general case, we are able to find a simple explicit relation between \(\mathcal{R}^{\mathrm{{lin}}}\) and \(\mathcal{R}_{\mathrm{{Koiter}}}^{\mathrm{{lin}}} \) only in the case of the constrained Cosserat-shell model. This is not surprising, since only symmetric stress tensors are taken into account in the classical linear Koiter model, i.e., the internal strain energy does not depend on the skew-symmetric part of the considered strain measures (since it is work conjugate to the skew-symmetric part of the stress tensor). In addition, the linear Koiter model does not consider extra degrees of freedom. In [32] we will discuss the choice of the deformation measures in shell models. We will see that the classical strain measure \(\mathcal{R}_{\mathrm{{Koiter}}}^{\mathrm{{lin}}} \) (the classical bending strain measure, also known as the change of curvature tensor) does not represent the unique choice and that some other modified expressions of the classical bending tensor may be more suitable in the modelling of a shell.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghiba, ID., Bîrsan, M. & Neff, P. A Linear Isotropic Cosserat Shell Model Including Terms up to \(O(h^{5})\). Existence and Uniqueness. J Elast 154, 579–605 (2023). https://doi.org/10.1007/s10659-022-09981-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-022-09981-6

Keywords

Mathematics Subject Classification

Navigation