Skip to main content
Log in

Energies for Elastic Plates and Shells from Quadratic-Stretch Elasticity

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We derive stretching and bending energies for isotropic elastic plates and shells. Through the dimensional reduction of a bulk elastic energy quadratic in Biot strains, we obtain two-dimensional bending energies quadratic in bending measures featuring a bilinear coupling of stretches and geometric curvatures. For plates, the bending measure is invariant under spatial dilations and naturally extends primitive bending strains for straight rods. For shells or naturally-curved rods, the measure is not dilation invariant, and contrasts with previous ad hoc postulated forms. The corresponding field equations and boundary conditions feature moments linear in the bending measures, and a decoupling of stretching and bending such that application of a pure moment results in isometric deformation of a unique neutral surface, primitive behaviors in agreement with classical linear response but not displayed by commonly used analytical models. We briefly comment on relations between our energies, those derived from a neo-Hookean bulk energy, and a commonly used discrete model for flat membranes. Although the derivation requires consideration of stretch and rotation fields, the resulting energy and field equations can be expressed entirely in terms of metric and curvature components of deformed and reference surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that the bounds on these coefficients mentioned in [4] were overly conservative.

  2. We don’t want to end up with “odd bending elasticity”.

References

  1. Vitral, E., Hanna, J.A.: Dilation-invariant bending of elastic plates, and broken symmetry in shells. J. Elast. (2022). https://doi.org/10.1007/s10659-022-09894-4, 2111.01349

    Article  Google Scholar 

  2. John, F.: Plane strain problems for a perfectly elastic material of harmonic type. Commun. Pure Appl. Math. 13(2), 239–296 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lur’e, A.I.: Theory of elasticity for a semilinear material. J. Appl. Math. Mech. 32(6), 1068–1085 (1968)

    Article  MATH  Google Scholar 

  4. Vitral, E., Hanna, J.A.: Quadratic-stretch elasticity. Math. Mech. Solids (2021). https://doi.org/10.1177/10812865211022417

    Article  MATH  Google Scholar 

  5. Irschik, H., Gerstmayr, J.: A continuum mechanics based derivation of Reissner’s large-displacement finite-strain beam theory: the case of plane deformations of originally straight Bernoulli-Euler beams. Acta Mech. 206, 1–21 (2009)

    Article  MATH  Google Scholar 

  6. Oshri, O., Diamant, H.: Strain tensor selection and the elastic theory of incompatible thin sheets. Phys. Rev. E 95, 053003 (2017)

    Article  Google Scholar 

  7. Wood, H.G., Hanna, J.A.: Contrasting bending energies from bulk elastic theories. Soft Matter 15, 2411–2417 (2019)

    Article  Google Scholar 

  8. Atluri, S.N.: Alternate stress and conjugate strain measures, and mixed variational formulations involving rigid rotations, for computational analyses of finitely deformed solids, with application to plates and shells—I: Theory. Comput. Struct. 18(1), 93–116 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Stumpf, H., Makowski, J.: On large strain deformations of shells. Acta Mech. 65, 153–168 (1986)

    Article  MATH  Google Scholar 

  10. Ozenda, O., Virga, E.G.: On the Kirchhoff-Love hypothesis (revised and vindicated). J. Elast. 143, 359–384 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Steigmann, D.J.: Thin-plate theory for large elastic deformations. Int. J. Non-Linear Mech. 42(2), 233–240 (2007)

    Article  MATH  Google Scholar 

  12. Steigmann, D.J.: Two-dimensional models for the combined bending and stretching of plates and shells based on three-dimensional linear elasticity. Int. J. Eng. Sci. 46(7), 654–676 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Steigmann, D.J.: Extension of Koiter’s linear shell theory to materials exhibiting arbitrary symmetry. Int. J. Eng. Sci. 51, 216–232 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Steigmann, D.J.: Koiter’s shell theory from the perspective of three-dimensional nonlinear elasticity. J. Elast. 111(1), 91–107 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Biricikoglu, V., Kalnins, A.: Large elastic deformations of shells with the inclusion of transverse normal strain. Int. J. Solids Struct. 7(5), 431–444 (1971)

    Article  MATH  Google Scholar 

  16. Chernykh, K.F.: Nonlinear theory of isotropically elastic thin shells. Mech. Solids 15(2), 118–127 (1980)

    MathSciNet  Google Scholar 

  17. Pietraszkiewicz, W., Szwabowicz, M.L., Vallée, C.: Determination of the midsurface of a deformed shell from prescribed surface strains and bendings via the polar decomposition. Int. J. Non-Linear Mech. 43(7), 579–587 (2008)

    Article  MATH  Google Scholar 

  18. Wisniewski, K.: A shell theory with independent rotations for relaxed Biot stress and right stretch strain. Comput. Mech. 21(2), 101–122 (1998)

    Article  MATH  Google Scholar 

  19. Sansour, C., Bufler, H.: An exact finite rotation shell theory, its mixed variational formulation and its finite element implementation. Int. J. Numer. Methods Eng. 34(1), 73–115 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wiśniewski, K.: Finite Rotation Shells: Basic Equations and Finite Elements for Reissner Kinematics. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  21. Flügge, W.: Tensor Analysis and Continuum Mechanics. Springer, New York (1972)

    Book  MATH  Google Scholar 

  22. Antman, S.: General solutions for plane extensible elasticae having nonlinear stress-strain laws. Q. Appl. Math. 26(1), 35–47 (1968)

    Article  MATH  Google Scholar 

  23. Reissner, E.: On one-dimensional finite-strain beam theory: the plane problem. Z. Angew. Math. Phys. 23, 795–804 (1972)

    Article  MATH  Google Scholar 

  24. Whitman, A.B., DeSilva, C.N.: An exact solution in a nonlinear theory of rods. J. Elast. 4(4), 265–280 (1974)

    Article  MATH  Google Scholar 

  25. Knoche, S., Kierfeld, J.: Buckling of spherical capsules. Phys. Rev. E 84, 046608 (2011)

    Article  Google Scholar 

  26. Armon, S., Efrati, E., Kupferman, R., Sharon, E.: Geometry and mechanics in the opening of chiral seed pods. Science 333, 1726–1730 (2011)

    Article  Google Scholar 

  27. Pezzulla, M., Stoop, N., Jiang, X., Holmes, D.P.: Curvature-driven morphing of non-Euclidean shells. Proc. R. Soc. A 473, 20170087 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Steigmann, D.J.: Applications of polyconvexity and strong ellipticity to nonlinear elasticity and elastic plate theory. In: Schröder, J., Neff, P. (eds.) Poly-, Quasi- and Rank-One Convexity in Applied Mechanics, pp. 265–299. Springer, Berlin (2010)

    Chapter  Google Scholar 

  29. Efrati, E., Sharon, E., Kupferman, R.: Elastic theory of unconstrained non-Euclidean plates. J. Mech. Phys. Solids 57(4), 762–775 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Seung, H.S., Nelson, D.R.: Defects in flexible membranes with crystalline order. Phys. Rev. A 38(2), 1005 (1988)

    Article  Google Scholar 

  31. Schmidt, B., Fraternali, F.: Universal formulae for the limiting elastic energy of membrane networks. J. Mech. Phys. Solids 60(1), 172–180 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Virga, E.G.: A pure measure of bending for plates. Unpublished note (2021)

  33. Hanna, J.A.: Some observations on variational elasticity and its application to plates and membranes. Z. Angew. Math. Phys. 70, 76 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ugural, A.C., Fenster, S.K.: Advanced Strength and Applied Elasticity. Prentice Hall, Upper Saddle River (2003)

    MATH  Google Scholar 

  35. Hoger, A., Carlson, D.E.: Determination of the stretch and rotation in the polar decomposition of the deformation gradient. Q. Appl. Math. 42(1), 113–117 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by U.S. National Science Foundation grant CMMI-2001262. We thank E.G. Virga for extensive detailed discussions and for sharing notes on related work. We also acknowledge helpful discussions with S. Cheng, P. Plucinsky, and E. Vouga.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Hanna.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitral, E., Hanna, J.A. Energies for Elastic Plates and Shells from Quadratic-Stretch Elasticity. J Elast 153, 581–598 (2023). https://doi.org/10.1007/s10659-022-09895-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-022-09895-3

Keywords

Mathematics Subject Classification

Navigation