Skip to main content
Log in

Crystallographic Texture and Group Representations

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

A Related Article was published on 01 May 2022

Abstract

This exposition consists of three parts. Part I is an introduction to classical texture analysis. The harmonic method and the approach initiated by Roe, where the orientation distribution function (ODF) is always defined on the rotation group SO(3), is emphasized and given a systematic treatment. Basic concepts (e.g., the orientation density function) are made precise through their mathematical definition. The active view of rotations is implemented throughout. A conscientious effort is made to use machinery already available in mathematics and physics. The Wigner \(D\)-functions, whose properties are familiar in physics, are used instead of Bunge’s and Roe’s versions of generalized spherical harmonics. By including three mathematical appendices, it is hoped that engineering students would find Part I readable. The objectives of Parts II and III are threefold, namely: (i) To delve deeper into the mathematical foundations of the harmonic method. The Weyl method is used to prove that the Wigner \(D\)-functions are the matrix elements of a complete set of pairwise-inequivalent, continuous, irreducible unitary representation of SO(3). General formulas of the Wigner \(D\)-functions, valid for any parametrization of SO(3), are derived. An elementary proof (attributed to Wigner) of the Peter-Weyl theorem is presented. (ii) To provide mathematical prerequisites in group representations for research on representation theorems that delineate the effects of crystallographic texture on material properties defined by tensors or pseudotensors. (iii) To introduce tensorial Fourier expansion of the ODF and the tensorial texture coefficients. The classical ODF expansion in Wigner \(D\)-functions is recast as a special tensorial Fourier series. The relation between the tensorial and classical texture coefficients in this context is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography

  1. Adams, B.L., Boehler, J.P., Guidi, M., Onat, E.T.: Group theory and representation of microstructure and mechanical behavior of polycrystals. J. Mech. Phys. Solids 40, 723–737 (1992)

    MathSciNet  MATH  Google Scholar 

  2. Adams, B.L., Wright, S.I., Kunze, K.: Orientation imaging: the emergence of a new microscopy. Metall. Trans. A 24A, 819–831 (1993)

    Google Scholar 

  3. Adams, B.L., Kalidindi, S.R., Fullwood, D.T.: Microstructure-Sensitive Design for Performance Optimization. Butterworth-Heinemann, Amsterdam (2013)

    Google Scholar 

  4. Als-Nielsen, J., McMorrow, D.: Elements of Modern X-Ray Physics, 2nd edn. Wiley, Chichester (2011)

    Google Scholar 

  5. Andreescu, T., Andrica, D., Cucurezeanu, I.: An Introduction to Diophantine Equations: A Problem-Based Approach. Birkhäuser, Boston (2010)

    MATH  Google Scholar 

  6. Armstrong, M.A.: Groups and Symmetry. Springer, New York (1988)

    MATH  Google Scholar 

  7. Aroyo, M.I. (ed.): International Tables for Crystallography. Volume A: Space-Group Symmetry, 6th edn. Wiley, West Sussex (2016)

    MATH  Google Scholar 

  8. ASTM Standards: E2627-13 Practice for determining average grain size using electron backscatter diffraction (EBSD) in fully recrystallized polycrystalline materials. ASTM International, West Conshohocken, Pennsylvania (2013)

  9. Authier, A.: Dynamical Theory of X-Ray Diffraction. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  10. Authier, A.: Early Days of X-Ray Crystallography. Oxford University Press, Oxford (2013)

    Google Scholar 

  11. Azároff, L.V.: Elements of X-Ray Crystallography. McGraw-Hill, New York (1968)

    Google Scholar 

  12. Baba-Kishi, K.Z., Dingley, D.J.: Backscatter Kikuchi diffraction in the SEM for identification of crystallographic point groups. Scanning 11, 305–312 (1989)

    Google Scholar 

  13. Bäbler, F.: Über einen Satz aus der Theorie der Kristallklassen. Comment. Math. Helv. 20, 65–67 (1947)

    MathSciNet  MATH  Google Scholar 

  14. Bacciagaluppi, G., Valentini, A.: Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  15. Backus, G.: A geometrical picture of anisotropic elastic tensors. Reviews of Geophysics and Space Physics 8, 633–671 (1970)

    Google Scholar 

  16. Baerheim, R.: Harmonic decomposition of the anisotropic elasticity tensor. Q. J. Mech. Appl. Math. 46, 391–418 (1993)

    MathSciNet  MATH  Google Scholar 

  17. Banach, S.: The Lebesgue integral in abstract spaces. Note II in [280], pp. 320–330 (1937)

  18. Barkla, C.G.: Secondary radiation from gases subject to X-rays. Philos. Mag. Ser. 6(5), 685–698 (1903)

    Google Scholar 

  19. Barlow, W.: Probable nature of the internal symmetry of crystals. Nature 29, 186–188 (1883). 205–207

    Google Scholar 

  20. Barlow, W., Pope, W.J.: The relation between the crystalline form and the chemical constitution of simple inorganic substances. J. Chem. Soc. 91, 1150–1214 (1907)

    Google Scholar 

  21. Barlow, W., Miers, H.A., Smith, H.: The structure of crystals. Part I: report on the development of the geometrical theories of crystal structure, 1666–1901. In: Report of the Seventy-First Meeting of the British Association for the Advancement of Science held at Glasgow in September 1901, pp. 297–337. John Murray, London (1901)

    Google Scholar 

  22. Baudin, T., Penelle, R.: Determination of the total texture function from individual orientation measurements by electron backscattering pattern. Metall. Trans. A 24A, 2299–2311 (1993)

    Google Scholar 

  23. Baudin, T., Jura, J., Penelle, R., Pospiech, J.: Estimation of the minimum grain number for the orientation distribution function calculation from individual orientation measurements on Fe-3%Si and Ti-4Al-6V alloys. J. Appl. Crystallogr. 28, 582–589 (1995)

    Google Scholar 

  24. Bauer, H.: Probability Theory and Elements of Measure Theory. Academic, London (1981)

    MATH  Google Scholar 

  25. Bauer, H.: Measure and Integration Theory. de Gruyter, Berlin (2001)

    MATH  Google Scholar 

  26. Bhagavantam, S., Suryanarayana, D.: Crystal symmetry and physical properties: application of group theory. Acta Crystallogr. 2, 21–26 (1949)

    Google Scholar 

  27. Bhagavantam, S., Venkatarayudu, T.: Theory of Groups and Its Application to Physical Problems. Academic Press, New York (1969)

    MATH  Google Scholar 

  28. Biedenharn, L.C., Louck, J.D.: Angular Momentum in Quantum Physics: Theory and Application. Addison-Wesley, Reading (1981)

    MATH  Google Scholar 

  29. Bijvoet, J.M., Burgers, W.G., Hägg, G. (eds.): Early Papers on Diffraction of X-Rays by Crystals Oosthoek, Utrecht (1969)

    Google Scholar 

  30. Birkholz, M., Fewster, P.F., Genzel, C.: Thin Film Analysis by X-Ray Scattering. Wiley-VCH, Weinheim (2006)

    Google Scholar 

  31. Biswas, A., Vajragupta, N., Hielscher, R., Hartmaier, A.: Optimized reconstruction of the crystallographic orientation density function based on a reduced set of orientations. J. Appl. Crystallogr. 53, 178–187 (2020)

    Google Scholar 

  32. Bitter, F.: Introduction to Ferromagnetism. McGraw-Hill, New York (1937)

    Google Scholar 

  33. Bôcher, M.: Introduction to Higher Algebra. MacMillan, New York (1915). Reprinted, Forgotten Books, London (2018)

    Google Scholar 

  34. Böhlke, T.: Texture simulation based on tensorial Fourier coefficients. Comput. Struct. 84, 1086–1094 (2006)

    Google Scholar 

  35. Bollmann, W.: Crystal Defects and Crystalline Interfaces. Springer, New York (1970)

    Google Scholar 

  36. Boothby, W.M.: An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd edn. Academic, Orlando (1986)

    MATH  Google Scholar 

  37. Borchardt-Ott, W.: Crystallography: An Introduction, 3rd edn. Springer, Heidelberg (2011)

    Google Scholar 

  38. Bourbaki, N.: Intégration. Chapter 1–4. Hermann, Paris (1965). Translated into English by S.K. Berberian: Integration I. Chapter 1–6. Springer, Berlin (2004)

    Google Scholar 

  39. Bouten, M.: On the rotation operators in quantum mechanics. Physica 42, 572–580 (1969)

    MATH  Google Scholar 

  40. Bowen, R.M., Wang, C.-C.: Introduction to Vectors and Tensors, 2nd edn. Dover, Mineola (2008)

    MATH  Google Scholar 

  41. Bozzolo, N., Gerspach, F., Sawina, G., Wagner, F.: Accuracy of orientation distribution function determination based on EBSD data – a case study of a recrystallized low alloyed Zr sheet. J. Microsc. 227, 275–283 (2007)

    MathSciNet  Google Scholar 

  42. Bradley, C.J., Cracknell, A.P.: The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups. Clarendon Press, Oxford (2010)

    MATH  Google Scholar 

  43. Bragg, W.L.: The diffraction of short electromagnetic waves by a crystal. Proc. Camb. Philos. Soc. 17, 43–57 (1912)

    MATH  Google Scholar 

  44. Bragg, W.L.: The specular reflection of X-rays. Nature 90, 410 (1912)

    Google Scholar 

  45. Bragg, W.L.: X-rays and crystals. Sci. Prog. Twent. Century 7, 372–389 (1913)

    Google Scholar 

  46. Bragg, W.H.: Bakerian lecture: X-rays and crystal structure. Philos. Trans. R. Soc. A 215, 253–274 (1915)

    Google Scholar 

  47. Brandmüller, J.: An extension of the Neumann–Minnigerode–Curie Principle. Comput. Math. Appl. 12B, 97–100 (1986)

    MathSciNet  Google Scholar 

  48. Bravais, A.: Mémoire sur les polyèdres de forme symétriques. J. Math. Pures Appl. 14, 141–180 (1849). = pp. XIX–LXII of Études Cristallographiques. Gauthier-Villars, Paris (1866)

    Google Scholar 

  49. Bravais, A.: Mémoire sur les systèmes formés par des points distribués regulièrement sur un plan ou dans l’espace. J. Éc. Polytech. 19, 1–128 (1850). Translated into English by A.J. Shaler: On the Systems Formed by Points Regularly Distributed on a Plane or in Space. Crystallographic Society of America (1949); reprinted, Dover, Mineola, New York (2005)

    Google Scholar 

  50. Brickell, F., Clark, R.S.: Differentiable Manifolds. Van Nostrand, London (1970)

    MATH  Google Scholar 

  51. Brink, D.M., Satchler, G.R.: Angular Momentum, 3rd edn. Clarendon Press, Oxford (1993)

    MATH  Google Scholar 

  52. Britton, T.B., Jiang, J., Guob, Y., Vilalta-Clemente, A., Wallis, D., Hansenc, L.N., Winkelmann, A., Wilkinson, A.J.: Tutorial: crystal orientations and EBSD – or which way is up? Mater. Charact. 117, 113–126 (2016)

    Google Scholar 

  53. Brough, I., Bate, P.S., Humphreys, F.J.: Optimising the angular resolution of EBSD. Mater. Sci. Technol. 22, 1279–1286 (2006)

    Google Scholar 

  54. Buerger, M.J.: The crystallographic symmetries determinable by X-ray diffraction. Proc. Natl. Acad. Sci. USA 36, 324–329 (1950)

    MathSciNet  MATH  Google Scholar 

  55. Bump, D.: Lie Groups, 2nd edn. Springer, New York (2013)

    MATH  Google Scholar 

  56. Bunge, H.-J.: Zur Darstellung allgemeiner Texturen. Z. Metallkde. 56, 872–874 (1965)

    Google Scholar 

  57. Bunge, H.-J.: Mathematische Methoden der Texturen. Akademie-Verlag, Berlin (1969)

    Google Scholar 

  58. Bunge, H.J.: Determination of the orientation distribution function from isolated axis density values. Textures Cryst. Solids 2, 169–174 (1977)

    Google Scholar 

  59. Bunge, H.-J.: Texture analysis by orientation distribution functions (ODF analysis). Z. Metallkde. 68, 571–581 (1977)

    Google Scholar 

  60. Bunge, H.-J.: Texture Analysis in Materials Science: Mathematical Methods. Butterworths, London (1982)

    Google Scholar 

  61. Bunge, H.J. (ed.): Experimental Techniques of Texture Analysis. DGM Inf. Ges, Oberursel (1986)

    Google Scholar 

  62. Bunge, H.J.: Physical versus mathematical aspects in texture analysis. Textures Microstruct. 25, 71–108 (1996)

    Google Scholar 

  63. Bunge, H.-J., Haessner, F.: Three-dimensional orientation distribution function of crystals in cold-rolled copper. J. Appl. Phys. 39, 5503–5514 (1968)

    Google Scholar 

  64. Bunge, H.J., Esling, C., Muller, J.: The role of the inversion centre in texture analysis. J. Appl. Crystallogr. 13, 544–554 (1980)

    Google Scholar 

  65. Bunge, H.J., Esling, C., Muller, J.: The influence of crystal and sample symmetries on the orientation distribution function of the crystallites in polycrystalline materials. Acta Crystallogr. A 37, 889–899 (1981)

    MathSciNet  Google Scholar 

  66. Burckhardt, J.J.: Die Bewegungsgruppen der Kristallographie. Birkhäuser, Basel (1947). Second edition, Birkhäuser, Basel (1966)

    MATH  Google Scholar 

  67. Burckhardt, J.J.: Zur Geschichte der Entdeckung der 230 Raumgruppen. Arch. Hist. Exact Sci. 4, 235–246 (1967)

    MathSciNet  MATH  Google Scholar 

  68. Burns, G., Glazer, A.M.: Space Groups for Solid State Scientists, 2nd edn. Academic, Boston (1990)

    Google Scholar 

  69. Carmeli, M.: Representations of the three-dimensional rotation group in terms of direction and angle of rotation. J. Math. Phys. 9, 1987–1992 (1968)

    MATH  Google Scholar 

  70. Carmeli, M., Malin, S.: Representations of the Rotation and Lorentz Groups: An Introduction. Dekker, New York (1976)

    MATH  Google Scholar 

  71. Carmo, M.P.d.: Riemannian Geometry. Birkhäuser, Boston (1992)

    MATH  Google Scholar 

  72. Casselman, W.: Packing pennies in the plane: an illustrated proof of Kepler’s conjecture in 2D. AMS Feature Column Archive (2000). http://www.ams.org/publicoutreach/feature-column/fcarc-cass1

  73. Coddington, E.A.: An Introduction to Ordinary Differential Equations. Dover, New York (1961)

    MATH  Google Scholar 

  74. Compton, A.H.: The distribution of the electrons in atoms. Nature 95, 343–344 (1915)

    Google Scholar 

  75. Conway, J.B.: A Course in Functional Analysis, 2nd edn. Springer, New York (2000)

    Google Scholar 

  76. Cowin, S.C.: Properties of the anisotropic elasticity tensor. Q. J. Mech. Appl. Math. 42, 249–266 (1989). Corrigendum 46, 541–542 (1993)

    MathSciNet  MATH  Google Scholar 

  77. Cowin, S.C.: On the number of distinct elastic constants associated with certain anisotropic elastic symmetries. Z. Angew. Math. Phys. 46, S210–S224 (1995). Special Issue

    MathSciNet  MATH  Google Scholar 

  78. Coxeter, H.S.M.: Introduction to Geometry, 2nd edn. Wiley, New York (1969)

    MATH  Google Scholar 

  79. Coxeter, H.S.M.: Regular Polytopes, 3rd edn. Dover, New York (1973)

    MATH  Google Scholar 

  80. Cushing, J.T.: Applied Analytical Mathematics for Physical Scientists. Wiley, New York (1975)

    Google Scholar 

  81. Dahms, M.: The iterative series-expansion method for quantitative texture analysis. II. Applications. J. Appl. Crystallogr. 25, 258–267 (1992)

    Google Scholar 

  82. Dahms, M.: Introduction of the phone-concept into pole figure inversion using the iterative series expansion method. Textures Microstruct. 19, 169–174 (1992)

    Google Scholar 

  83. Dahms, M., Bunge, H.J.: A positivity method for the determination of complete orientation distribution functions. Textures Microstruct. 10, 21–35 (1988)

    Google Scholar 

  84. Dahms, M., Bunge, H.J.: The iterative series-expansion method for quantitative texture analysis. I. General outline. J. Appl. Crystallogr. 22, 439–447 (1989)

    Google Scholar 

  85. De Graef, M., McHenry, M.E.: Structure of Materials: An Introduction to Crystallography, Diffraction, and Symmetry. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  86. Demirel, M.C., El-Dasher, B.S., Adams, B.L., Rollett, A.D.: Studies on the accuracy of electron backscatter diffraction measurements. In: [288], pp. 65–74 (2000)

  87. Dempster, A.P.: The minimum of a definite ternary quadratic form. Can. J. Math. 9, 232–234 (1957)

    MathSciNet  MATH  Google Scholar 

  88. Diestel, J., Spalsbury, A.: The Joys of Haar Measure. Am. Math. Soc., Providence (2014)

    MATH  Google Scholar 

  89. Dieudonné, J.: Treatise on Analysis. Volume II (Enlarged and Corrected Printing). Academic, New York (1976)

    MATH  Google Scholar 

  90. Dingley, D.J., Wright, S.I.: Phase identification through symmetry determination in EBSD patterns. In: [289], pp. 97–107 (2009)

    Google Scholar 

  91. Dingley, D.J., Baba-Kishi, K.Z., Randle, V.: Atlas of Backscattering Kikuchi Diffraction Patterns. Institute of Physics Publishing, Bristol (1995)

    Google Scholar 

  92. Dirac, P.A.M.: The quantum theory of the emission and absorption of radiation. Proc. R. Soc. A 114, 243–265 (1927)

    MATH  Google Scholar 

  93. Dirac, P.A.M.: The quantum theory of dispersion. Proc. R. Soc. A 114, 710–728 (1927)

    MATH  Google Scholar 

  94. Du, W.: Material tensors and pseudotensors of weakly-textured polycrystals with orientation measure defined on the orthogonal group. Doctoral dissertation, University of Kentucky, Lexington (2015)

  95. Du, W., Man, C.-S.: Material tensors and pseudotensors of weakly-textured polycrystals with orientation distribution function defined on the orthogonal group. J. Elast. 127, 197–233 (2017)

    MathSciNet  MATH  Google Scholar 

  96. Dudley, R.M.: Real Analysis and Probability. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  97. Dugundji, J.: Topology. Allyn and Bacon, Boston (1966)

    MATH  Google Scholar 

  98. Edmonds, A.R.: Angular Momentum in Quantum Mechanics. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  99. Edmonds, A.R.: Angular Momentum in Quantum Mechanics. Princeton University Press, Princeton (1974). Third printing of the second edition, with corrections

    MATH  Google Scholar 

  100. Eghtesad, A., Barrett, T.J., Knezevic, M.: Compact reconstruction of orientation distributions using generalized spherical harmonics to advance large-scale crystal plasticity modeling: verification using cubic, hexagonal, and orthorhombic polycrystals. Acta Mater. 155, 418–432 (2018)

    Google Scholar 

  101. Engel, P.: Geometric Crystallography: An Axiomatic Introduction to Crystallography. D. Reidel, Dordrecht (1986)

    MATH  Google Scholar 

  102. Engelking, R.: Outline of General Topology. North-Holland, Amsterdam (1968). Translated from the Polish by K. Sieklucki

    MATH  Google Scholar 

  103. Engler, O.: Comparison of X-ray and electron backscatter diffraction textures for back-annealed Al–Mg alloys. J. Appl. Crystallogr. 42, 1147–1157 (2009)

    Google Scholar 

  104. Engler, O., Randle, V.: Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping, 2nd edn. CRC Press, Boca Raton (2010)

    Google Scholar 

  105. Engler, O., Yang, P., Gottstein, G., Jura, J., Pospiech, J.: Behaviour of statistical texture parameters applied to single grain orientation measurements in recrystallized Al-Mn. Mater. Sci. Forum 157(162), 933–938 (1994)

    Google Scholar 

  106. Engler, O., Jura, J., Matthies, S.: Influence of number and arrangement of single orientation measurements on their statistical relevance. In: [307], pp. 68–73 (1999)

    Google Scholar 

  107. Ericksen, J.L.: On the symmetry of deformable crystals. Arch. Ration. Mech. Anal. 72, 1–13 (1979)

    MathSciNet  MATH  Google Scholar 

  108. Eschner, Th.: Texture analysis by means of model functions. Textures Microstruct. 21, 139–146 (1993)

    Google Scholar 

  109. Esling, C., Bunge, H.J., Muller, J.: Description of the texture by distribution functions on the space of orthogonal transformations. Implications on the inversion centre. J. Phys. Lett. 41, 543–545 (1980)

    Google Scholar 

  110. Esling, C., Bechler-Ferry, E., Bunge, H.J.: Three-dimensional texture analysis after Bunge and Roe: correspondence between the respective mathematical techniques. Textures Microstruct. 5, 92–125 (1982)

    Google Scholar 

  111. Ewald, P.P.: Die Berechnung der Kristallstruktur aus Interferenzenaufnahmen mit X-Strahlen. Phys. Z. 15, 339–401 (1914). Text of paper reproduced in full in [29, pp. 82–86], but the Abstract is not included

    Google Scholar 

  112. Ewald, P.P.: Fifty Years of X-Ray Diffraction: Dedicated to the International Union of Crystallography on the Occasion of the Commemoration Meeting in Munich July 1962. Utrecht, Oosthoek (1962)

    Google Scholar 

  113. Ewald, P.P., Hermann, C.: Gilt der Friedelsche Satz über die Symmetrie der Röntgeninterferenzen? Z. Kristallogr. 65, 251–259 (1927)

    Google Scholar 

  114. Feil, D.: Diffraction physics. Isr. J. Chem. 16, 103–110 (1977)

    Google Scholar 

  115. Fermi, E.: Quantum theory of radiation. Rev. Mod. Phys. 4, 87–132 (1932)

    MATH  Google Scholar 

  116. Folland, G.B.: Real Analysis: Modern Techniques and Their Applications, 2nd edn. Wiley, New York (1999)

    MATH  Google Scholar 

  117. Ford, L.R.: Automorphic Functions, 2nd edn. Chelsea, New York (1951)

    MATH  Google Scholar 

  118. Forte, S., Vianello, M.: Symmetry classes for elasticity tensors. J. Elast. 43, 81–108 (1996)

    MathSciNet  MATH  Google Scholar 

  119. Friedel, G.: Sur les symétries cristallines que peut révéler la diffraction des rayons Röntgen. C. R. Hebd. Séances Acad. Sci. 157, 1533–1536 (1913)

    Google Scholar 

  120. Friedrich, W., Knipping, P., Laue, M.: Interferenz-Erscheinungen bei Röntgenstrahlen. Sitzungsber. Math.-Phys. Kl. K.B. Akad. Wiss. München Jahrg. 1912, 303–332 (1912). Text of paper reproduced in full in [29, pp. 7–22], but Figs. 2, 8–10, and 12 of the plates are not included.

    Google Scholar 

  121. Fulks, W.: Advanced Calculus: An Introduction to Analysis. Wiley, New York (1961)

    MATH  Google Scholar 

  122. Fullwood, D.T., Niezgoda, S.R., Adams, B.L., Kalidindi, S.R.: Microstructure sensitive design for performance optimization. Prog. Mater. Sci. 55, 477–562 (2010)

    Google Scholar 

  123. Gauss, C.F.: Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen von Ludwig August Seeber. Göttingische gelehrte. Anzeigen, 1831 Juli 9. J. Reine Angew. Math. 20, 312–320 (1840). = pp. 188–196 of Werke, Zweiter Band, Königlichen Gesellschaft der Wissenschaften, Göttingen (1863)

    MathSciNet  Google Scholar 

  124. Gel’fand, I.M., Šapiro, Z.Ya.: Representations of the group of rotations in three-dimensional space and their applications [in Russian]. Usp. Mat. Nauk (N.S.) 7(47), 3–117 (1952). [English translation] American Mathematical Society Translations, Series 2 2, 207–316 (1956)

    Google Scholar 

  125. Gel’fand, I.M., Minlos, R.A., Shapiro, Z.Ya.: Representations of the Rotation and Lorentz Groups and Their Applications. MacMillan, New York (1963)

    MATH  Google Scholar 

  126. Giacovazzo, C. (ed.): Fundamentals of Crystallography, 2nd edn. Oxford University Press, Oxford (2002)

    Google Scholar 

  127. Giacovazzo, C.: The diffraction of X-rays by crystals. In: [126], pp. 153–225 (2002)

  128. Glazer, A.M.: A Journey Into Reciprocal Space: A Crystallographer’s Perspective. Morgan & Claypool, San Rafae (2017)

    Google Scholar 

  129. Glazer, A.M., Burns, G.: Space Group for Solid State Scientists, 3rd edn. Academic, Waltham (2013)

    Google Scholar 

  130. Godefroy, H.A.P.: A study of orientation maps: crystallographic symmetry, mean orientation, and applications. Doctoral dissertation, University of Kentucky, Lexington (2008)

  131. Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory. Volume II. Springer, New York (1988)

    MATH  Google Scholar 

  132. Guidi, M., Adams, B.L., Onat, E.T.: Tensorial representation of the orientation distribution function in cubic polycrystals. Textures Microstruct. 19, 147–167 (1992)

    Google Scholar 

  133. Hahn, Th. (ed.): International Tables for Crystallography. Volume A: Space-Group Symmetry Springer, Dordrecht (2005). Fifth, revised edition; reprinted with corrections

    Google Scholar 

  134. Hales, T.C.: A proof of the Kepler conjecture. Ann. Math. 162, 1063–1183 (2005)

    MathSciNet  MATH  Google Scholar 

  135. Hales, T.C.: Historical overview of the Kepler conjecture. Discrete Comput. Geom. 36, 5–20 (2006)

    MathSciNet  MATH  Google Scholar 

  136. Hales, T.: Dense Sphere Packings: A Blueprint for Formal Proofs. Cambridege University Press, Cambridge (2012)

    MATH  Google Scholar 

  137. Hales, T., Adams, M., Bauer, G., Dang, T., Harrison, J., Hoang, L., Zumkeller, R.: A formal proof of the Kepler conjecture. Forum Math. Pi 5, E2 (2017). https://doi.org/10.1017/fmp.2017.1

    Article  MathSciNet  MATH  Google Scholar 

  138. Hall, B.C.: Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, 2nd edn. Springer, New York (2015)

    MATH  Google Scholar 

  139. Hammond, C.: The Basics of Crystallography and Diffraction, 4th edn. Oxford University Press, Oxford (2016). Reprinted with corrections

    Google Scholar 

  140. Hansen, J., Pospiech, J., Lücke, K.: Tables for Texture Analysis of Cubic Crystals. Springer, Berlin (1978)

    Google Scholar 

  141. Hartree, D.R.: The wave mechanics of an atom with a non-Coulomb central field. Part II. Some results and discussion. Proc. Camb. Philos. Soc. 24, 111–132 (1928)

    MATH  Google Scholar 

  142. Helming, K.: Some applications of the texture component model. Mater. Sci. Forum 157(162), 363–368 (1994)

    Google Scholar 

  143. Helming, K.: Texturapproximation durch Modellkomponenten. Habilitation Thesis, TU Clausthal, Clausthal-Zellerfeld (1995). Curvillier Verlag, Göttingen (1998)

  144. Helming, K.: A nearly equal distant grid of orientations for quantitative texture analysis. Textures Microstruct. 28, 219–230 (1997)

    Google Scholar 

  145. Helming, K.: Texture approximations by model components. In: [290], pp. 125–132 (1998)

    Google Scholar 

  146. Helming, K., Eschner, Th.: A new approach to texture analysis of multiphase materials using a texture component model. Cryst. Res. Technol. 25, K203–K208 (1990)

    Google Scholar 

  147. Helming, K., Kruse, R., Siegesmund, S.: Texture analysis of an amphibolite using the component method. Mater. Sci. Forum 157(162), 529–534 (1994)

    Google Scholar 

  148. Helming, K., Schwarzer, R.A., Rauschenbach, B., Geier, S., Leiss, B., Wenk, H.-R., Ullemeyer, K., Heinitz, J.: Texture estimates by means of components. Z. Metallkde. 85, 545–553 (1994)

    Google Scholar 

  149. Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis. Volume 1: Structure of Topological Groups, Integration Theory, Group Representations. Springer, Berlin (1963)

    MATH  Google Scholar 

  150. Hielscher, R.: Kernel density estimation on the rotation group and its application to crystallographic texture analysis. J. Multivar. Anal. 119, 119–143 (2013)

    MathSciNet  MATH  Google Scholar 

  151. Hielscher, R., Schaeben, H.: A novel pole figure inversion method: specification of the MTEX algorithm. J. Appl. Crystallogr. 41, 1024–1037 (2008)

    Google Scholar 

  152. Hilbert, D., Cohn-Vossen, S.: Geometry and the Imagination. Chelsea, New York (1952)

    MATH  Google Scholar 

  153. Hilton, H.: Mathematical Crystallography and the Theory of Groups of Movements. Clarendon Press, Oxford (1903). Reprinted, Dover, New York (1963)

    MATH  Google Scholar 

  154. Hilton, H.: An Introduction to the Theory of Groups of Finite Order. Clarendon Press, Oxford (1908)

    MATH  Google Scholar 

  155. Hirsch, M.W., Smale, S.: Differential Equations, Dynamical Systems, and Linear Algebra. Academic, New York (1974)

    MATH  Google Scholar 

  156. Hsiang, W.-Y.: Least Action Principle of Crystal Formation of Dense Packing Type and Kepler’s Conjecture. World Scientific, Singapore (2001)

    MATH  Google Scholar 

  157. Huang, M., Man, C.-S.: Constitutive relation of elastic polycrystal with quadratic texture dependence. J. Elast. 72, 183–212 (2003)

    MathSciNet  MATH  Google Scholar 

  158. Humbert, M.: Intensity corrections, resolving power and statistical relevance in pole figure measurements. In: [61], pp. 29–50 (1986)

    Google Scholar 

  159. Humphreys, F.J.: Quantitative metallography by electron backscattered diffraction. J. Microsc. 195, 170–185 (1999)

    Google Scholar 

  160. Hutchinson, W.B., Lindh, E., Bate, P.: On the determination of textures from discrete orientation measurements. In: [307], pp. 34–51 (1999)

    Google Scholar 

  161. Huynh, D.Q.: Metrics for 3D rotations: comparison and analysis. J. Math. Imaging Vis. 35, 155–164 (2009)

    MathSciNet  MATH  Google Scholar 

  162. Iserles, A., Munthe-Kaas, H.Z., Nørsett, S.P., Zanna, A.: Lie-group methods. Acta Numer. 9, 215–365 (2000)

    MathSciNet  MATH  Google Scholar 

  163. Iyanaga, S., Sugiura, M.: Algebra [in Japanese]. In: Yamanouchi, T., et al. (eds.) Iwanami Course in Modern Applied Mathematics, vol. A.1.1–A.1.3. Iwanami, Tokyo (1957). Translated into Chinese by Q. Xiong, Shanghai Science and Technology Press, Shanghai (1962)

    Google Scholar 

  164. Jahn, H.A.: Note on the Bhagavantam-Suryanarayana method of enumerating the physical constants of crystals. Acta Crystallogr. 2, 30–33 (1949)

    MathSciNet  Google Scholar 

  165. James, R.W.: The Optical Principles of the Diffraction of X-Rays. Cornell University Press, Ithaca (1965)

    Google Scholar 

  166. James, R.W., Waller, I., Hartree, D.R.: An investigation into the existence of zero-point energy in the rock-salt lattice by an X-ray diffraction method. Proc. R. Soc. A 118, 334–350 (1928)

    Google Scholar 

  167. Jöchen, K., Böhlke, T.: Representative reduction of crystallographic orientation data. J. Appl. Crystallogr. 46, 960–971 (2013)

    Google Scholar 

  168. Jordan, C.: Essai sur géométrie à \(n\) dimensions. Bull. Soc. Math. Fr. 3, 103–174 (1875). = Œuvres de Camille Jordan, Tome III, pp. 79–149. Gauthier-Villars, Paris (1962)

    MATH  Google Scholar 

  169. Jura, J., Pospiech, J., Gottstein, G.: Estimation of the minimum number of single grain orientation measurements for ODF determination. Z. Met.kd. 87, 476–480 (1996)

    Google Scholar 

  170. Kallend, J.S.: Determination of the orientation distribution from pole figure data. In: [180], Chap. 3, pp. 102–124 (1998)

    Google Scholar 

  171. Kallend, J.S., Kocks, U.F., Rollett, A.D., Wenk, H.-R.: Operational texture analysis. Mater. Sci. Eng. A 132, 1–11 (1991)

    Google Scholar 

  172. Kallend, J.S., Kocks, U.F., Rollett, A.D., Wenk, H.-R.: popLA – an integrated software system for texture analysis. Textures Microstruct. 14–18, 1203–1208 (1991)

    Google Scholar 

  173. Katzir, S.: The emergence of the principle of symmetry in physics. Hist. Stud. Phys. Biol. Sci. 35, 35–65 (2004)

    Google Scholar 

  174. Kepler, J.: Strena seu De Nive Sexangula. Gottfried Tampach, Frankfurt am Main (1611). Translated into English by J. Bromberg: The Six-Cornered Snowflake: A New Year’s Gift. Paul Dry Books, Philadelphia (2010)

    Google Scholar 

  175. Khatkevich, A.G.: The elastic constants of crystals [in Russian]. Kristallografiya 6, 700–703 (1961). [English translation] Soviet Physics – Crystallgraphy 6, 561–563 (1962)

    Google Scholar 

  176. Kim, S.K.: The 32 general generator sets of 230 double space groups. J. Math. Phys. 27, 1471–1483 (1986)

    MathSciNet  MATH  Google Scholar 

  177. Kim, S.K.: Group Theoretical Methods and Applications to Molecules and Crystals. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  178. Klein, F.: Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade. Teubner, Leipzig (1884). Translated into English by G.G. Morrice: Lectures on the Ikosahedron, and the Solution of Equations of the Fifth Degree. Trübner, London (1888)

    MATH  Google Scholar 

  179. Knightly, A., Li, C.: Traces of Hecke Operators. Am. Math. Soc., Providence (2006)

    MATH  Google Scholar 

  180. Kocks, U.F., Tomé, C.N., Wenk, H.-R. (eds.): Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  181. Kovetz, A.: Electromagnetic Theory. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  182. Kronig, R.d.L., Rabi, I.I.: The symmetrical top in the undulatory mechanics. Phys. Rev. 29, 262–269 (1927)

    MATH  Google Scholar 

  183. Ladd, M.F.C., Palmer, R.A.: Structure Determination by X-Ray Crystallography, 3rd edn. Plenum, New York (1993)

    Google Scholar 

  184. Lalena, J.N.: From quartz to quasicrystals: probing nature’s geometric patterns in crystalline substances. Crystallogr. Rev. 12, 125–180 (2006)

    Google Scholar 

  185. Lang, S.: Real Analysis. Addison-Wesley, Reading (1969)

    Google Scholar 

  186. Lee, J.M.: Introduction to Smooth Manifolds. Springer, New York (2006)

    Google Scholar 

  187. Liang, Z., Zuo, L., Chu, Y. (eds.): Proceedings of the Eleventh International Conference on Textures of Materials, ICOTOM 11, September 16–20, 1996, Xi’an, China. International Academic Publishers, Beijing (1996)

    Google Scholar 

  188. Liu, Y.S., Penelle, R., Wang, F.H., Xu, J.Z., Liang, Z.D.: Estimate the grain number for true ODF determination by individual orientation detection method. Mater. Sci. Forum 157(162), 375–380 (1994)

    Google Scholar 

  189. Lobos, M., Böhlke, T.: Materials design for the anisotropic linear elastic properties of textured cubic crystal aggregates using zeroth-, first- and second-order bounds. Int. J. Mech. Mater. Des. 11, 59–78 (2015)

    Google Scholar 

  190. Lobos Fernández, M., Böhlke, T.: Representations of Hashin-Shtrikman bounds in terms of texture coefficients for arbitrarily anisotropic polycrystalline materials. J. Elast. 134, 1–38 (2019)

    MathSciNet  MATH  Google Scholar 

  191. Lobos Fernández, M., Yuzbasioglu, T., Böhlke, T.: Homogenization and materials design of anisotropic multiphase linear elastic materials using central model functions. J. Elast. 128, 17–60 (2017)

    MathSciNet  MATH  Google Scholar 

  192. Lu, J.: Finite rotation groups [in Chinese], pp. 282–294. Shanghai Science and Technology Press, Shanghai (1962). Appendix in Chinese Translation of [163]

    Google Scholar 

  193. Lücke, K., Pospiech, J., Virnich, K.H., Jura, J.: On the problem of the reproduction of the true orientation distribution from pole figures. Acta Metall. 29, 167–185 (1981)

    Google Scholar 

  194. Lücke, K., Pospiech, J., Jura, J., Hirsch, J.: On the presentation of orientation distribution functions by model functions. Z. Metallkde. 77, 312–321 (1986)

    Google Scholar 

  195. Lyubarskii, G.Ya.: The Application of Group Theory in Physics. Pergamon, New York (1960)

    Google Scholar 

  196. Mackenzie, J.K.: Second paper on statistics associated with the random disorientation of cubes. Biometrika 45, 229–240 (1958)

    MathSciNet  MATH  Google Scholar 

  197. Mackenzie, J.K., Thomson, M.J.: Some statistics associated with the random disorientation of cubes. Biometrika 44, 205–210 (1957)

    MathSciNet  MATH  Google Scholar 

  198. Malgrange, C., Ricolleau, C., Schlenker, M.: Symmetry and Physical Properties of Crystals. Springer, Dordrecht (2014)

    MATH  Google Scholar 

  199. Man, C.-S.: On the constitutive equations of some weakly-textured materials. Arch. Ration. Mech. Anal. 143, 77–103 (1998)

    MathSciNet  MATH  Google Scholar 

  200. Man, C.-S.: Effects of crystallographic texture on the acoustoelastic coefficients of polycrystals. Nondestruct. Test. Eval. 15, 191–214 (1999)

    Google Scholar 

  201. Man, C.-S., Huang, M.: Identification of material parameters in yield functions and flow rules for weakly-textured sheets of cubic metals. Int. J. Non-Linear Mech. 36, 501–514 (2001)

    MATH  Google Scholar 

  202. Man, C.-S., Huang, M.: A simple explicit formula for the Voigt-Reuss-Hill average of elastic polycrystals with arbitrary crystal and texture symmetries. J. Elast. 105, 29–48 (2011)

    MathSciNet  MATH  Google Scholar 

  203. Man, C.-S., Huang, M.: A representation theorem for material tensors of weakly-textured polycrystals and its applications in elasticity. J. Elast. 106, 1–42 (2012)

    MathSciNet  MATH  Google Scholar 

  204. Man, C.-S., Noble, L.: Designing textured polycrystals with specific isotropic material tensors: the ODF method. Rend. Semin. Mat. Univ. Pol. Torino 58, 155–170 (2000)

    MathSciNet  MATH  Google Scholar 

  205. Man, C.-S., Paroni, R.: On the separation of stress-induced and texture-induced birefringence in acoustoelasticity. J. Elast. 45, 91–116 (1996)

    MathSciNet  MATH  Google Scholar 

  206. Man, C.-S., Zhao, D.: Remarks on texture coefficients of polycrystals with improper crystallite symmetry. J. Elast. 138, 111–124 (2020)

    MathSciNet  MATH  Google Scholar 

  207. Man, P.P.: Wigner active and passive rotation matrices applied to NMR tensor. Concepts Magn. Reson., Part A 45A, e21385 (2017)

    Google Scholar 

  208. Mandl, F., Shaw, G.: Quantum Field Theory, 2nd edn. Wiley, Hoboken (2010)

    MATH  Google Scholar 

  209. Margenau, H., Murphy, G.M.: The Mathematics of Physics and Chemistry, 2nd edn. Van Nostrand, Princeton (1956)

    MATH  Google Scholar 

  210. Maslen, E.N., Fox, A.G., O’keefe, M.A.: Sect. 6.1.1. X-ray scattering. In: [265], pp. 554–590 (2004)

    Google Scholar 

  211. Mason, J.K.: The relationship of the hyperspherical harmonics to SO(3), SO(4) and orientation distribution functions. Acta Crystallogr. A 65, 259–266 (2009)

    MathSciNet  MATH  Google Scholar 

  212. Mason, J.K., Schuh, C.A.: Hyperspherical harmonics for the representation of crystallographic texture. Acta Mater. 56, 6141–6155 (2008)

    Google Scholar 

  213. Mason, J.K., Schuh, C.A.: Expressing crystallographic textures through the orientation distribution function: conversion between generalized spherical harmonic and hyperspherical harmonic expansions. Metall. Mater. Trans. A 40A, 2590–2602 (2009)

    Google Scholar 

  214. Matthies, S.: On the reproducibility of the orientation distribution function of texture samples from pole figures (ghost phenomena). Phys. Status Solidi (b) 92, K135–K138 (1979)

    Google Scholar 

  215. Matthies, S.: On the reproducibility of the orientation distribution function of texture samples from pole figures (I): relationship between the ODF and pole figures. Kristall und Technik 15, 431–444 (1980)

    Google Scholar 

  216. Matthies, S.: Standard functions in the texture analysis. Phys. Status Solidi (b) 101, K111–K115 (1980)

    Google Scholar 

  217. Matthies, S.: Form effects in the description of the orientation distribution function (ODF) of texturized materials by model components. Phys. Status Solidi (b) 112, 705–716 (1982)

    Google Scholar 

  218. Matthies, S.: Some remarks on theoretical developments in quantitative texture analysis and on the optimal calculation of harmonic quantities with high precision. Textures Microstruct. 8–9, 115–129 (1988)

    Google Scholar 

  219. Matthies, M., Vinel, G.W.: On the reproduction of the orientation distribution function of textured samples from reduced pole figures using the conception of a conditional ghost correction. Phys. Status Solidi (b) 112, K111–K114 (1982)

    Google Scholar 

  220. Matthies, S., Wagner, F.: Study of the ghost phenomena in mathematical texture analysis by means of standard functions. Phys. Status Solidi (b) 107, 591–601 (1981)

    Google Scholar 

  221. Matthies, S., Wagner, F.: On a 1/n law on texture related single orientation analysis. Phys. Status Solidi (b) 196, K11–K15 (1996)

    Google Scholar 

  222. Matthies, S., Wagner, F.: Using sets of individual orientations for ODF determination. In: [307], pp. 40–45 (1999)

    Google Scholar 

  223. Matthies, S., Wenk, H.-R.: ODF reproduction with conditional ghost correction. In: [337], pp. 139–147 (1985)

    Google Scholar 

  224. Matthies, S., Vinel, G.W., Helming, K.: Standard Distributions in Texture Analysis: Maps for the Case of Cubic-Orthorhombic Symmetry. Akademie-Verlag, Berlin (1987)

    Google Scholar 

  225. Matthies, S., Muller, J., Vinel, G.W.: On the normal distribution in the orientation space. Textures Microstruct. 10, 77–96 (1988)

    Google Scholar 

  226. Matthies, S., Wenk, H.-R., Vinel, G.W.: Some basic concepts of texture analysis and comparison of three methods to calculate orientation distributions from pole figures. J. Appl. Crystallogr. 21, 285–304 (1988)

    Google Scholar 

  227. McCarty, G.: Topology: An Introduction with Application to Topological Groups. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

  228. Mehrabadi, M.M., Cowin, S.C.: Eigentensors of linear anisotropic elastic materials. Q. J. Mech. Appl. Math. 43, 15–41 (1990)

    MathSciNet  MATH  Google Scholar 

  229. Meng, D., Zhu, P.: Representation Theory of Finite Groups [in Chinese]. Science Press, Beijing (2006)

    Google Scholar 

  230. Messiah, A.: Quantum Mechanics. Volume 2. North-Holland, Amsterdam (1962). Translated from the French by J. Potter

    MATH  Google Scholar 

  231. Michael, J.R.: Phase identification using electron backscattered diffraction in the scanning electron microscope. In: [288], pp. 75–89 (2000)

    Google Scholar 

  232. Miller, W.: Symmetry Groups and Their Applications. Academic Press, New York (1972)

    MATH  Google Scholar 

  233. Mochizuki, E.: Spherical harmonic decomposition of an elastic tensor. Geophys. J. 93, 521–526 (1988)

    MATH  Google Scholar 

  234. Monaco, H.L., Artioli, G.: Experimental methods in X-ray and neutron crystallography. In: [126], pp. 295–411 (2002)

    Google Scholar 

  235. Morawiec, A.: Orientations and Rotations: Computations in Crystallographic Textures. Springer, Berlin (2004)

    MATH  Google Scholar 

  236. Morris, P.R.: Program for calculation of augmented Jacobi polynomials. Texture 2, 57–66 (1975)

    Google Scholar 

  237. Morris, P.R.: Symmetry requirements of \(W_{lmn}\) with odd \(l\) for cubic crystal symmetry. Textures Microstruct. 4, 241–242 (1982)

    Google Scholar 

  238. Morrison, M.A., Parker, G.A.: A guide to rotations in quantum mechanics. Aust. J. Phys. 40, 465–497 (1987)

    Google Scholar 

  239. Moses, H.E.: Irreducible representations of the rotation group in terms of Euler’s theorem. Nuovo Cimento 40A, 1120–1138 (1965)

    MathSciNet  MATH  Google Scholar 

  240. Moses, H.E.: Irreducible representations of the rotation group in terms of the axis and angle of rotation. Ann. Phys. 37, 224–226 (1966)

    MathSciNet  MATH  Google Scholar 

  241. Müller, U.: Symmetry Relationships Between Crystal Structures: Applications of Crystallographic Group Theory in Crystal Chemistry. Oxford University Press, Oxford (2013)

    Google Scholar 

  242. Munkres, J.R.: Topology: A First Course. Prentice-Hall, Englewood Cliffs (1975)

    MATH  Google Scholar 

  243. Nachbin, L.: On the finite dimensionality of every irreducible unitary representation of a compact group. Proc. Am. Math. Soc. 12, 11–12 (1961)

    MathSciNet  MATH  Google Scholar 

  244. Naimark, M.A.: Linear Representations of the Lorentz Group. Pergamon, Oxford (1964). Distributed by MacMillan, New York

    Google Scholar 

  245. Naimark, M.A., Štern, A.I.: Theory of Group Representations. Springer, New York (1982). Translated into English by Elizabeth Hewitt; translation editor Edwin Hewitt

    MATH  Google Scholar 

  246. Nespolo, M., Aroyo, M.I., Souvignier, B.: Crystallographic shelves: space-group hierarchy explained. J. Appl. Crystallogr. 51, 1481–1491 (2018)

    Google Scholar 

  247. Nesse, W.D.: Introduction to Mineralogy. Oxford University Press, New York (2000)

    Google Scholar 

  248. Newnham, R.E.: Properties of Materials: Anisotropy, Symmetry, Structure. Oxford University Press, Oxford (2005)

    Google Scholar 

  249. Nielsen, H.H.: The vibration-rotation energies of molecules. Rev. Mod. Phys. 23, 90–136 (1951)

    MATH  Google Scholar 

  250. Niezgoda, S.R., Glover, J.: Unsupervised learning for effective texture estimation from limited discrete orientation data. Metall. Mater. Trans. A 44A, 4891–4905 (2013)

    Google Scholar 

  251. Nowell, M.M., Chui-Sabourin, M., Carpenter, J.O.: Recent advances in high-speed orientation mapping. Microsc. Today 14(6), 6–9 (2006)

    Google Scholar 

  252. Nye, J.F.: Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford University Press, Oxford (1985)

    MATH  Google Scholar 

  253. Paroni, R.: Homogenization of polycrystalline aggregates. Arch. Ration. Mech. Anal. 151, 311–337 (2000)

    MathSciNet  MATH  Google Scholar 

  254. Paroni, R.: Optimal bounds on texture coefficients. J. Elast. 60, 19–34 (2000)

    MathSciNet  MATH  Google Scholar 

  255. Paroni, R., Man, C.-S.: Constitutive equations of elastic polycrystalline materials. Arch. Ration. Mech. Anal. 150, 153–177 (1999)

    MathSciNet  MATH  Google Scholar 

  256. Pauling, L., Wilson, E.B. Jr.: Introduction to Quantum Mechanics: With Applications to Chemistry. McGraw-Hill, New York (1935)

    Google Scholar 

  257. Perlwitz, H.-J., Lücke, K., Pitsch, W.: Determination of the orientation distribution of the crystallites in rolled copper and brass by electron microscopy. Acta Metall. 17, 1183–1195 (1969)

    Google Scholar 

  258. Peter, F., Weyl, H.: Die Vollständigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppe. Math. Ann. 97, 737–755 (1927)

    MathSciNet  MATH  Google Scholar 

  259. Phillips, D.C.: William Lawrence Bragg, 31 March 1890–1 July 1971. Biogr. Mem. Fellows R. Soc. 25, 74–143 (1979)

    Google Scholar 

  260. Pitteri, M., Zanzotto, G.: Continuum Models for Phase Transitions and Twinning in Crystals. Chapman & Hall/CRC, Boca Raton (2003)

    MATH  Google Scholar 

  261. Pontryagin, L.S.: Topological Groups, 2nd edn. Gordon and Breach, New York (1966)

    Google Scholar 

  262. Pospiech, J., Jura, J.: Determination of the orientation distribution function from incomplete pole figures. Z. Metallkde. 65, 324–330 (1974)

    Google Scholar 

  263. Pospiech, J., Lücke, K.: The rolling textures of copper and \(\alpha \)-brass discussed in terms of the orientation distribution function. Acta Metall. 23, 997–1007 (1975)

    Google Scholar 

  264. Pospiech, J., Jura, J., Gottstein, G.: Statistical-analysis of single grain-orientation data generated from model textures. Mater. Sci. Forum 157(162), 407–412 (1994)

    Google Scholar 

  265. Prince, E. (ed.): International Tables for Crystallography. Volume C: Mathematical, Physical and Chemical Tables Kluwer, Dordrecht (2004)

    Google Scholar 

  266. Rainville, E.D.: Special Functions. Macmillan, New York (1960)

    MATH  Google Scholar 

  267. Ram, F., Zaefferer, S., Jäpel, T., Raabe, D.: Error analysis of the crystal orientations and disorientations obtained by the classical electron backscatter diffraction technique. J. Appl. Crystallogr. 48, 797–813 (2015)

    Google Scholar 

  268. Ramírez Galarza, A.I., Seade, J.: Introduction to Classical Geometries. Birkhäuser, Basel (2007)

    MATH  Google Scholar 

  269. Reiche, R., Rademacher, H.: Die Quantelung des symmetrischen Kreisels nach Schrödingers Undulationsmechanik. Z. Phys. 39, 444–464 (1926)

    MATH  Google Scholar 

  270. Roe, R.-J.: Description of crystallite orientation in polycrystalline materials. III. General solution to pole figures. J. Appl. Phys. 36, 2024–2031 (1965)

    Google Scholar 

  271. Roe, R.-J.: Inversion of pole figures for materials having cubic crystal symmetry. J. Appl. Phys. 37, 2069–2072 (1966)

    Google Scholar 

  272. Roe, R.-J.: Methods of X-Ray and Neutron Scattering in Polymer Science. Oxford University Press, New York (2000)

    Google Scholar 

  273. Roman, S.: Advanced Linear Algebra, 3rd edn. Springer, New York (2008)

    MATH  Google Scholar 

  274. Rose, M.E.: Elementary Theory of Angular Momentum. Wiley, New York (1957)

    MATH  Google Scholar 

  275. Rossin, J., Leser, P., Pusch, K., Frey, C., Murray, S., Torbet, C., Smith, S., Daly, S., Pollock, T.M.: Bayesian inference of elastic constants and texture coefficients in additively manufactured cobalt-nickel superalloys using resonant ultrasound spectroscopy. Acta Mater. 220, 117287 (2021).

    Google Scholar 

  276. Rossmann, W.: Lie Groups: An Introduction Through Linear Groups. Oxford, New York (2002)

    MATH  Google Scholar 

  277. Rousseau, J.-J.: Basic Crystallography. J. Wiley, Chichester (1998)

    MATH  Google Scholar 

  278. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  279. Rudin, W.: Functional Analysis, 2nd edn. McGraw-Hill, New York (1991)

    MATH  Google Scholar 

  280. Saks, S.: Theory of the Integral. Hafner, New York (1937). Second revised edition. Translated into English by L.C. Young

    MATH  Google Scholar 

  281. Saks, S.: Integration in abstract metric spaces. Duke Math. J. 4, 408–411 (1938)

    MathSciNet  MATH  Google Scholar 

  282. Satake, I.: Linear Algebra. Dekker, New York (1975)

    MATH  Google Scholar 

  283. Schaeben, H.: A unified view of methods to resolve the inverse problem of texture goniometry. Textures Microstruct. 25, 171–181 (1996)

    Google Scholar 

  284. Schaeben, H., van den Boogaart, K.G.: Spherical harmonics in texture analysis. Tectonophysics 370, 253–268 (2003)

    Google Scholar 

  285. Schrödinger, E.: Quantisierung als Eigenwertproblem (Vierte Mitteilung). Ann. Phys. 81, 109–139 (1926). [English translation] Quantisation as a problem of proper values. Part IV. In: [286], pp. 102–123

    MATH  Google Scholar 

  286. Schrödinger, E.: Collected Papers on Wave Mechanics. Chelsea, New York (1982)

    Google Scholar 

  287. Schrödinger, E.: Wave mechanics. In: [14], pp. 406–424 (2009)

  288. Schwartz, A.J., Kumar, K., Adams, B.L. (eds.): Electron Backscatter Diffraction in Materials Science Kluwer/Plenum, New York (2000)

    Google Scholar 

  289. Schwartz, A.J., Kumar, K., Adams, B.L., Fields, D.P. (eds.): Electron Backscatter Diffraction in Materials Science 2nd edn. Springer, New York (2009)

    Google Scholar 

  290. Schwarzer, R.A. (ed.) Texture and Anisotropy of Polycrystals: Proceedings of the International Conference on Texture and Anisotropy of Polycrystals, ITAP, Clausthal, Germany, September 1997. Materials Science Forum, vol. 273–275. Trans Tech Publications, Uetikon-Zürich (1998)

    Google Scholar 

  291. Schwarzer, R.A.: Measurement of macrotexture by automated crystal orientation mapping: an alternative to X-ray diffraction. Mater. Sci. Technol. 16, 1384–1388 (2000)

    Google Scholar 

  292. Schwarzer, R.A.: A fast ACOM/EBSD system. Arch. Metall. Mater. 53, 5–10 (2008)

    Google Scholar 

  293. Schwarzer, R.A., Fields, D.P., Adams, B.L., Kumar, K., Schwartz, A.J.: Present state of electron backscatter diffraction and prospective developments. In: [289], pp. 1–20 (2009)

    Google Scholar 

  294. Senechal, M.: Finding the finite groups of symmetries of the sphere. Am. Math. Mon. 97, 329–335 (1990)

    MathSciNet  MATH  Google Scholar 

  295. Senechal, M.: Crystalline Symmetries: An Informal Mathematical Introduction. Adam Hilger, Bristol (2000)

    MATH  Google Scholar 

  296. Serre, J.-P.: Linear Representations of Finite Groups. Springer, New York (1977)

    MATH  Google Scholar 

  297. Shubnikov, A.V., Koptsik, V.A.: Symmetry in Science and Art. Plenum, New York (1974)

    Google Scholar 

  298. Shurman, J.: Geometry of the Quintic. Wiley, New York (1997)

    MATH  Google Scholar 

  299. Sirotin, Yu.I.: Decomposition of material tensors into irreducible parts. Sov. Phys. Crystallogr. 19, 565–568 (1975)

    MATH  Google Scholar 

  300. Sneddon, I.N.: Special Functions of Mathematical Physics and Chemistry. Oliver and Boyd, Edinburgh (1961)

    MATH  Google Scholar 

  301. Souvignier, B.: 1.3. A general introduction to space groups. In: [7], pp. 22–41 (2016)

    Google Scholar 

  302. Spencer, A.J.M.: A note on the decomposition of tensors into traceless symmetric tensors. Int. J. Eng. Sci. 8, 475–481 (1970)

    MathSciNet  MATH  Google Scholar 

  303. Stephenson, R.A.: On the uniqueness of the square-root of a symmetric, positive-definite tensor. J. Elast. 10, 214–215 (1980)

    MathSciNet  MATH  Google Scholar 

  304. Sternberg, S.: Group Theory and Physics. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  305. Sugiura, M.: Unitary Representations and Harmonic Analysis: An Introduction, 2nd edn. North-Holland, Amsterdam (1990)

    MATH  Google Scholar 

  306. Sutcliffe, B., Woolley, R.G.: The position of the clamped nuclei electronic Hamiltonian in quantum mechanics. Leszczynski, J. (ed.): Handbook of Computational Chemistry, pp. 13–54. Springer, Dordrecht (2012)

    Google Scholar 

  307. Szpunar, J.A. (ed.): Proceedings of the Twelfth International Conference on Textures of Materials, ICOTOM-12, McGill University, Montreal, Canada, August 9–13, 1999, vol. 1. NRC Research Press, Ottawa (1999)

    Google Scholar 

  308. Szwacki, N.G., Szwacka, T.: Basic Elements of Crystallography. Pan Stanford, Singapore (2010)

    Google Scholar 

  309. Talman, J.D.: Special Functions: A Group Theoretic Approach. Benjamin, New York (1968). Based on Lectures by Eugene P. Wigner

    MATH  Google Scholar 

  310. Tapp, K.: Matrix Groups for Undergraduates. Am. Math. Soc., Providence (2005)

    MATH  Google Scholar 

  311. Taylor, M.E.: Measure Theory and Integration. Am. Math. Soc., Providence (2006)

    MATH  Google Scholar 

  312. Thomas, J.M.: William Lawrence Bragg: The pioneer of X-ray crystallography and his pervasive influence. Angew. Chem., Int. Ed. 51, 12946–12958 (2012)

    Google Scholar 

  313. Thompson, W.J.: Angular Momentum: An illustrated Guide to Rotational Symmetries for Physical Systems. Wiley, New York (1994)

    MATH  Google Scholar 

  314. Thomson, J.J.: Conduction of Electricity through Gases. Cambridge University Press, Cambridge (1903)

    MATH  Google Scholar 

  315. Thomson, J.J.: Conduction of Electricity Through Gases, 2nd edn. Cambridge University Press, Cambridge (1906)

    MATH  Google Scholar 

  316. Ting, T.C.T.: Determination of \(C^{1/2}\), \(C^{-1/2}\) and more general isotropic tensor functions of \(C\). J. Elast. 15, 319–323 (1985)

    MATH  Google Scholar 

  317. Tisza, L.: Zur Deutung der Spektren mehratomiger Moleküle. Z. Phys. 82, 48–72 (1933)

    MATH  Google Scholar 

  318. Tjur, T.: Probability Based on Radon Measures. Wiley, Chichester (1980)

    MATH  Google Scholar 

  319. Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, New York (2002)

    MATH  Google Scholar 

  320. Toth, G.: Finite Möbius Groups, Minimal Immersions of Spheres, and Moduli. Springer, New York (2002)

    MATH  Google Scholar 

  321. Toupin, R.A., Bernstein, B.: Sound waves in deformed perfectly elastic materials. Acoustoelastic effect. J. Acoust. Soc. Am. 33, 216–225 (1961)

    MathSciNet  Google Scholar 

  322. Truesdell, C.: A First Course in Continuum Mechanics, vol. 1, 2nd edn. Academic, Boston (1991)

    MATH  Google Scholar 

  323. van der Waerden, B.L.: Group Theory and Quantum Mechanics. Springer, New York (1974)

    MATH  Google Scholar 

  324. Van Houtte, P., Wagner, F.: Development of textures by slip and twinning. In: [337], pp. 233–258 (1985)

    Google Scholar 

  325. Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K.: Quantum Theory of Angular Momentum. World Scientific, Singapore (1988)

    Google Scholar 

  326. Viglin, A.S.: A quantitative measure of the texture of a polycrystalline material: texture function [in Russian]. Fiz. Tverd. Tela 2, 2463–2476 (1960). [English translation] Soviet Physics – Solid State 2, 2195–2207 (1961)

    MathSciNet  Google Scholar 

  327. Vilenkin, N.Ja.: Special Functions and the Theory of Group Representations. Am. Math. Soc., Providence (1968)

    MATH  Google Scholar 

  328. von Neumann, J.: Zum Haarschen Mass in topologischen Gruppen. Compos. Math. 1, 106–114 (1935)

    MathSciNet  MATH  Google Scholar 

  329. Wagner, F.: Texture determination by individual orientation measurements. In: [61], pp. 115–123 (1986)

    Google Scholar 

  330. Wagner, F., Wenk, H.R., Esling, C., Bunge, H.J.: Importance of odd coefficients in texture calculations for trigonal-triclinic symmetries. Phys. Status Solidi (a) 67, 269–285 (1981)

    Google Scholar 

  331. Wagner, F., Humbert, M., Muller, J., Esling, C.: Optimization of the positivity method in quantitative texture analysis. Europhys. Lett. 11, 479–483 (1990)

    Google Scholar 

  332. Wagner, F., Matthies, S., Van Landuyt, O.: Processing individual orientations data to calculate ODFs. In: [290], pp. 89–98 (1998)

    Google Scholar 

  333. Wang, Y., Yu, C., Xing, L., Li, K., Chen, J., Liu, W., Ma, J., Shen, Z.: A data-driven scheme for quantitative analysis of texture. Metall. Mater. Trans. A 51A, 940–950 (2020)

    Google Scholar 

  334. Warren, B.E.: X-Ray Diffraction. Addison-Wesley, Reading (1969)

    Google Scholar 

  335. Waseda, Y., Matsubara, E., Shinoda, K.: X-Ray Diffraction Crystallography: Introduction, Examples and Solved Problems. Springer, Berlin (2011)

    Google Scholar 

  336. Wawrzyńczyk, A.: Group Representations and Special Functions. D. Reidel, Dordrecht (1984)

    MATH  Google Scholar 

  337. Wenk, H.-R. (ed.): Preferred Orientation in Deformed Metals and Rocks: An Introduction to Modern Texture Analysis Academic, Orlando (1985)

    Google Scholar 

  338. Wenk, H.-R., Van Houtte, P.: Texture and anisotropy. Rep. Prog. Phys. 67, 1367–1428 (2004)

    Google Scholar 

  339. Weyl, H.: Symmetry. Princeton University Press, Princeton (1952)

    MATH  Google Scholar 

  340. Wigner, E.P.: Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren. Vieweg, Braunschweig (1931)

    MATH  Google Scholar 

  341. Wigner, E.P.: Group Theory and Its Applications to the Quantum Mechanics of Atomic Spectra. Academic, New York (1959). Translated from the German by J.J. Griffin. Expanded and improved edition

    MATH  Google Scholar 

  342. Wigner, E.P.: The application of group theory to the special functions of mathematical physics. Lectures during the Spring Term of 1955. Notes by J.D. Talman. Princeton University, Princeton (unpublished)

  343. Wolf, A.A.: Rotation operators. Am. J. Phys. 37, 53–536 (1969)

    Google Scholar 

  344. Wondratschek, H.: Part 8. Introduction to space-group symmetry. In: [133], pp. 719–740 (2005)

    Google Scholar 

  345. Wright, S.I.: Random thoughts on non-random misorientation distributions. Mater. Sci. Technol. 22, 1287–1296 (2006)

    Google Scholar 

  346. Wright, A.I., Adams, B.L.: An evaluation of the single orientation method for texture determination in materials of moderate texture strength. Textures Microstruct. 12, 65–76 (1990)

    Google Scholar 

  347. Wright, A.I., Kocks, U.F.: A comparison of different texture analysis techniques. In: [187], pp. 53–62 (1996)

    Google Scholar 

  348. Wright, S.I., Nowell, M.M., Bingert, J.F.: A comparison of textures measured using X-ray and electron backscatter diffraction. Metall. Mater. Trans. A 38A, 1845–1855 (2007)

    Google Scholar 

  349. Yale, P.: Geometry and Symmetry. Holden-Day, San Francisco (1968)

    MATH  Google Scholar 

  350. Yamanouchi, T., Sugiura, M.: Introduction to the Theory of Continuous Groups [in Japanese]. Baifukan, Tokyo (1960)

    Google Scholar 

  351. Zachariasen, W.H.: Theory of X-Ray Diffraction in Crystals. Wiley, New York (1945)

    Google Scholar 

  352. Zare, R.N.: Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics. Wiley, New York (1988)

    Google Scholar 

  353. Zassenhaus, H.: Lehrbuch der Gruppentheorie. Erster Band. Teubner, Leipzig (1937). Translated into English by S. Kravetz: The Theory of Groups. Chelsea, New York (1949). Second English edition, Chelsea, New York (1958)

    MATH  Google Scholar 

  354. Zassenhaus, H.: Über einen Algorithmus zur Bestimmung der Raumgruppen. Comment. Math. Helv. 21, 117–141 (1948)

    MathSciNet  MATH  Google Scholar 

  355. Zheng, Q-s., Fu, Y-b.: Orientation distribution functions for microstructures of heterogeneous materials (II) – crystal distribution functions and irreducible tensors restricted by various material symmetries. Appl. Math. Mech. 22, 885–903 (2001)

    MathSciNet  MATH  Google Scholar 

  356. Zheng, Q.-S., Zou, W.-N.: Irreducible decompositions of physical tensors of high orders. J. Eng. Math. 37, 273–288 (2000)

    MathSciNet  MATH  Google Scholar 

  357. Zou, W.-N., Zheng, Q.-S., Du, D.-X., Rychlewski, J.: Orthogonal irreducible decompositions of tensors of higher orders. Math. Mech. Solids 6, 249–267 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Sing Man.

Additional information

To May, with love and gratitude

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Man, CS. Crystallographic Texture and Group Representations. J Elast 149, 3–445 (2022). https://doi.org/10.1007/s10659-022-09882-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-022-09882-8

Keywords

Mathematics Subject Classification (2020)

Navigation