Skip to main content
Log in

Pure Shearing and Pure Distortional Deformations Are Not Equivalent

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

A Correction to this article was published on 01 May 2021

This article has been updated

Abstract

This paper attempts to clarify the notions of a state of pure shear stress and pure shearing deformations. Specifically, it is shown that pure shearing deformations and pure distortional deformations are not equivalent. Attention is limited to isotropic, compressible, hyperelastic materials. Differences between the distortional deformations of pure shearing, pure shear caused by tension and compression, and plane strain extension and contraction defined as pure shear by Rivlin and Saunders (Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 243(865):251–288, 1951) are discussed. It is shown that these deformations are physically different and should not be expected to test the same features of a proposed form of the strain energy function. It is also shown that two deformations of pure shearing and two deformations of pure shear caused by tension and compression are nearly universal distortional deformations valid for all strain energy functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Beatty, M.F.: A class of universal relations in isotropic elasticity theory. J. Elast. 17(2), 113–121 (1987)

    Article  MathSciNet  Google Scholar 

  2. Bělík, P., Fosdick, R.: The state of pure shear. J. Elast. 52(1), 91–98 (1998)

    Article  MathSciNet  Google Scholar 

  3. Boulanger, P., Hayes, M.: On finite shear. Arch. Ration. Mech. Anal. 151(2), 125–185 (2000)

    Article  MathSciNet  Google Scholar 

  4. Boulanger, P., Hayes, M.: On pure shear. J. Elast. 77(1), 83–89 (2004)

    Article  MathSciNet  Google Scholar 

  5. Cristescu, N.: Dynamic Plasticity. Elsevier, Amsterdam (2012)

    MATH  Google Scholar 

  6. Destrade, M., Murphy, J.G., Saccomandi, G.: Simple shear is not so simple. Int. J. Non-Linear Mech. 47(2), 210–214 (2012)

    Article  ADS  Google Scholar 

  7. Flory, P.J.: Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 57, 829–838 (1961)

    Article  MathSciNet  Google Scholar 

  8. Gurtin, M.E.: The linear theory of elasticity. In: Linear Theories of Elasticity and Thermoelasticity, pp. 1–295. Springer, Berlin (1973)

    Google Scholar 

  9. Hayes, M., Laffey, T.: Pure shear–a footnote. J. Elast. 92(1), 109–113 (2008)

    Article  MathSciNet  Google Scholar 

  10. Lode, W.: Versuche über den Einfluß der mittleren Hauptspannung auf das Fließen der Metalle Eisen, Kupfer und Nickel. Z. Phys. 36, 913–939 (1926)

    Article  ADS  Google Scholar 

  11. Mihai, L.A., Goriely, A.: Positive or negative Poynting effect? The role of adscititious inequalities in hyperelastic materials. Proc. R. Soc. A, Math. Phys. Eng. Sci. 467(2136), 3633–3646 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Moon, H., Truesdell, C.: Interpretation of adscititious inequalities through the effects pure shear stress produces upon an isotropie elastic solid. Arch. Ration. Mech. Anal. 55(1), 1–17 (1974)

    Article  Google Scholar 

  13. Norris, A.N.: Pure shear axes and elastic strain energy. Q. J. Mech. Appl. Math. 59(4), 551–561 (2006)

    Article  MathSciNet  Google Scholar 

  14. Rivlin, R.S., Saunders, D.W.: Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 243(865), 251–288 (1951)

    ADS  MATH  Google Scholar 

  15. Rubin, M.B.: The significance of pure measures of distortion in nonlinear elasticity with reference to the Poynting problem. J. Elast. 20(1), 53–64 (1988)

    Article  MathSciNet  Google Scholar 

  16. Rubin, M.B.: Simple, convenient isotropic failure surface. J. Eng. Mech. 117(2), 348–369 (1991)

    Article  Google Scholar 

  17. Rubin, M.B.: Plasticity theory formulated in terms of physically based microstructural variables – part I. Theory. Int. J. Solids Struct. 31, 2615–2634 (1994)

    Article  Google Scholar 

  18. Sacommandi, G.: Universal results in finite elasticity. In: Yu, Y.B., Ogden, R.W. (eds.) Nonlinear Elasticity: Theory and Applications, p. 283 (2001). Chap. 3

    Google Scholar 

  19. Thiel, C., Voss, J., Martin, R.J., Neff, P.: Shear, pure and simple. Int. J. Non-Linear Mech. 112, 57–72 (2019)

    Article  ADS  Google Scholar 

  20. Ting, T.: Further study on pure shear. J. Elast. 83(1), 95–104 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the reviewers for suggesting additional relevant papers and acknowledge helpful discussions with K Heiduschke.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Rubin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubin, M.B. Pure Shearing and Pure Distortional Deformations Are Not Equivalent. J Elast 142, 383–393 (2020). https://doi.org/10.1007/s10659-020-09798-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-020-09798-1

Keywords

Mathematics Subject Classification

Navigation