Skip to main content
Log in

A Causality Setting for Elasticity Theory

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We give a causality approach to nonlinear elasticity theory within a pure mechanics setting. Based on the notion of a fixed frame in and Euclidean invariance considerations, we show how a broadly general and novel evolutionary hypothesis concerning ‘cause’ and ‘effect’ must reduce to the classical statement of the balance of energy, and we obtain all of the classical balance laws of continuum mechanics. The concept of mass and its balance is derived within this theory. The mass density naturally emerges from the theory without preconception as an inertial scalar field for the body which is associated with the speed of its material particles and a measure of their kinetic behavior. Aside from the causality hypothesis and its invariance, the fundamental notions of body, motion, force and internal power are primitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Green and Rivlin preferred to state this invariance in terms of superposed rigid body motions relative to a fixed frame. This somewhat imprecise ‘change of frame’ interpretation of their notion is not meant to infer equivalence of the two concepts. It is used here solely for the sake of convenience and simplicity in drawing a parallel to other works.

  2. In early days, causality, as a form of determinism, broadly influenced the origin of scientific thought and the attainment of rational knowledge. In Bunge’s [2] 1959 philosophical essay, Causality, he examines critically the causal principle and the meaning of the law of causation. In Part IV, he inquires into the place held by the causal principle in modern science, with the special interest of investigating the function of a philosophical principle in scientific research. He traces the relation between cause and reason, a subject of the \(17^{\text{th}}\) century rationalists, and he gives an evolutionary account of the causal principle in scientific thought and law, its meaning and interpretation. He draws the following conclusion [2, p. 335]: “The causal principle is one of the various valuable guides of scientific research and, like most of them, it enjoys an approximate validity in limited ranges; it is a general hypothesis with a high heuristic value–a fact suggesting that, in certain domains, it does correspond rather closely to reality.”

  3. Being inspired by the clarity and depth of Walter Noll’s publications on the foundations of continuum mechanics, J.E. Dunn and I began working on the question of splitting in the late 1960’s, and in December, 1969 R.F. presented invited colloquium talks at the University of Illinois and the University of Kentucky titled “A Causality Approach to Continuum Mechanics”. In these talks, a strategy for splitting and the existence of mass and its balance was presented, albeit the work was not yet completed.

  4. See, e.g., Gurtin and Williams [11].

  5. Later, in (6.8), we define the kinetic energy functional for \({\mathcal{P}}\) as the ratio \(\mathsf{K}_{\mathcal{P}}[\cdot ]/C\). It is interesting that in early 1900 Wilhelm Ostwald, according to Jammer [12, p. 108], entered the long-standing debate about the concept of mass and supported the fundamental idea that ‘mass’ should be defined in terms of energy. He conceived ‘mass’ as merely a capacity for kinetic energy and the definition given here, which is connected to the identification of kinetic energy, supports that point of view.

  6. Recall that for any mechanical process we have \(\boldsymbol{\sigma }_{t}(\cdot ; \boldsymbol{n})\in C^{1}({\mathcal{B}})\) for each \(\boldsymbol{n} \in \text{Unit}\) and \(\boldsymbol{\sigma }_{t}(\boldsymbol{X}; \cdot )\in C(\text{Unit})\) for each \(\boldsymbol{X}\in {\mathcal{B}}\), as was first noted in Sect. 3.3.

  7. Noll [13, p. 44] showed in his thesis that with the constitutive relation implicit in (6.26), the frame indifference of the stored energy function \(W(\boldsymbol{X},\cdot )\) and the symmetry of the Cauchy stress (6.23) are equivalent. Remarkably, three quarters of a century earlier Gibbs [6, p.190] argued, within nonlinear elasto-statics, for the symmetry of the stress based on invariance considerations, and he emphasized that the symmetry would persist in dynamical situations. It is interesting that Gibbs did not consider this symmetry to be connected to any balance law and that he made no mention of moment equilibrium in his work.

  8. See Remark 6.1.

References

  1. Bartle, R.G.: The Elements of Integration Theory. Wiley, New York (1966)

    MATH  Google Scholar 

  2. Bunge, M.: Causality, The Place of the Causal Principle in Modern Science. Harvard University Press, Cambridge (1959)

    Google Scholar 

  3. Favata, A., Podio-Guidugli, P., Tomassetti, G.: Energy splitting theorems for materials with memory. J. Elast. 101, 59–67 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fosdick, R.: A causality approach to particle dynamics for systems. Arch. Ration. Mech. Anal. 207(1), 247–302 (2013). https://doi.org/10.1007/s00205-012-0567-7

    Article  MathSciNet  MATH  Google Scholar 

  5. Fosdick, R., Serrin, J.: The splitting of intrinsic energy and the origin of mass density in continuum mechanics. Contin. Mech. Thermodyn. 26, 287–302 (2014). https://doi.org/10.1007/s00161-013-0301-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Gibbs, J.W.: On the equilibrium of heterogeneous substances. In: Trans. Conn. Acad. 1875–1878. The Scientific Papers, Vol. I, pp. 55–353. Yale University Press, New Haven (1907)

    Google Scholar 

  7. Green, A.E., Rivlin, R.S.: On Cauchy’s equations of motion. Z. Angew. Math. Phys. 15, 290–292 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  8. Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17, 113–147 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gurtin, M.E.: Thermodynamics and the possibility of spatial interaction in rigid heat conductors. Arch. Ration. Mech. Anal. 18, 335–342 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gurtin, M.E.: An Introduction to Continuum Mechanics. Academic Press, San Diego (1981)

    MATH  Google Scholar 

  11. Gurtin, M.E., Williams, W.O.: An axiomatic foundation for continuum thermodynamics. Arch. Ration. Mech. Anal. 26, 83–117 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jammer, M.: Concepts of Mass in Classical and Modern Physics. Harvard University Press, Cambridge (1961)

    Google Scholar 

  13. Noll, W.: On the continuity of the solid and fluid states. J. Ration. Mech. Anal. 4, 3–81 (1955)

    MathSciNet  MATH  Google Scholar 

  14. Noll, W.: La mécanique classique, basée sur un axiome d’objectivité. La méthode axiomatique dans les mécaniques classiques et nouvelles, pp. 47–63, Paris (1963)

  15. Podio-Guidugli, P.: Inertia and invariance. Ann. Mat. Pura Appl. (4) CLXXII, 103–124 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Serrin, J.: The equations of continuum mechanics as a consequence of group invariance. In: Ferrarese, G., Editrice, P. (eds.) Advances in Modern Continuum Mechanics, Bologna, pp. 217–225 (1992)

    Google Scholar 

  17. Šilhavý, M.: Mass, internal energy, and Cauchy’s equations in frame-indifferent thermodynamics. Arch. Ration. Mech. Anal. 107, 1–22 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Fosdick.

Additional information

Dedicated to the memory of Walter Noll with affection and a deep sense of gratitude for his clarity of style and expression of concept

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here, we summarize several special properties of F-differentiable functionals, introduced in Sect. 4.1 and used throughout Sects. 4 and 5.

Lemma A.1

(Chain-rule) Let\(\operatorname{\chi}_{t}\)be a tame motion according to Definition 3.1onfor all\(t\in {\mathcal{I}}\). Let\(\mathsf{R}_{\mathcal{P}}[\cdot , \cdot ]\)be a F-differentiable functional foraccording to property (1) of Definition 4.1. Then, the following chain-rule holds:

$$ \frac{\mathrm{d}}{\mathrm{d}t}\mathsf{R}_{\mathcal{P}}\bigl[|\dot{\operatorname{\chi}}_{t}|^{2}, \nabla \operatorname{\chi}_{t}\bigr] = \delta _{1}\mathsf{R}_{\mathcal{P}}\bigl[| \dot{\operatorname{\chi}}_{t}|^{2}, \nabla \operatorname{\chi}_{t}|\, 2\dot{\operatorname{\chi}}_{t}\cdot \ddot{\operatorname{\chi}}_{t}\bigr] + \delta _{2}\mathsf{R}_{\mathcal{P}}\bigl[| \dot{\operatorname{\chi}}_{t}|^{2}, \nabla \operatorname{\chi}_{t}|\, \dot{ \overline{\nabla \operatorname{\chi}_{t}}}\,\bigr] $$
(A.1)

for all\(t\in {\mathcal{I}}\).

Proof

Note that for a tame motion \(\operatorname{\chi}_{t}\), it follows from Definition 3.1 that \(\varphi _{t}:= |\dot{\operatorname{\chi}} _{t}|^{2} \in C^{+}({\mathcal{B}})\times C^{1}({\mathcal{I}})\) and \(\boldsymbol{A}_{t}:= \nabla \operatorname{\chi}_{t} \in C^{\mathrm{Lin}^{+}}({\mathcal{B}}) \times C^{1}({\mathcal{I}})\) and that \(\dot{\varphi }_{t}\) and \(\dot{\boldsymbol{A}}_{t}\) are in \(C({\mathcal{B}})\) for all \(t\in {\mathcal{I}}\). Then, since \(\mathsf{R}_{\mathcal{P}}[\cdot , \cdot ]\) is F-differentiable, we know that for all \(\tau , t\in {\mathcal{I}}\)

$$\begin{aligned} \mathsf{R}_{{\mathcal{P}}}[\varphi _{\tau }, \boldsymbol{A} _{\tau }] &= \mathsf{R}_{{\mathcal{P}}}[\varphi _{t} + \varphi _{\tau }- \varphi _{t}, \boldsymbol{A}_{t} + \boldsymbol{A}_{\tau }- \boldsymbol{A}_{t}] \\ & = \mathsf{R}_{{\mathcal{P}}}[\varphi _{t}, \boldsymbol{A}_{t}] + \delta _{1}\mathsf{R}_{{\mathcal{P}}}[\varphi _{t}, \boldsymbol{A}_{t}| \;\varphi _{\tau }- \varphi _{t}] + o\bigl(\|\varphi _{\tau }- \varphi _{t}\|\bigr) \\ & \quad {} + \delta _{2}\mathsf{R}_{{\mathcal{P}}}[\varphi _{t}, \boldsymbol{A} _{t}|\;\boldsymbol{A}_{\tau }- \boldsymbol{A}_{t}] + o\bigl(\| \boldsymbol{A}_{\tau }- \boldsymbol{A}_{t}\|\bigr). \end{aligned}$$

Thus, by computing

$$ \frac{\mathrm{d}}{\mathrm{d}t}\mathsf{R}_{{\mathcal{P}}}[\varphi _{t}, \boldsymbol{A} _{t}] = \lim_{\tau \rightarrow t}\frac{\mathsf{R}_{{\mathcal{P}}}[ \varphi _{t}, \boldsymbol{A}_{t}] - \mathsf{R}_{{\mathcal{P}}}[ \varphi _{\tau }, \boldsymbol{A}_{\tau }]}{t - \tau }, $$

we readily find

$$ \frac{\mathrm{d}}{\mathrm{d}t}\mathsf{R}_{{\mathcal{P}}}[\varphi _{t}, \boldsymbol{A} _{t}] = \delta _{1} \mathsf{R}_{\mathcal{P}}[\varphi _{t}, \boldsymbol{A}_{t}| \;\dot{\varphi }_{t}] + \delta _{2}\mathsf{R}_{ \mathcal{P}}[ \varphi _{t}, \boldsymbol{A}_{t}|\;\dot{\boldsymbol{A}} _{t}], $$
(A.2)

and by using the definitions of \(\varphi _{t}\) and \(\boldsymbol{A}_{t}\), we arrive at (A.1).  ■

Lemma A.2

(Mean-value theorem)

  1. (1)

    Let\(\{\varphi ^{(1)}, \varphi ^{(2)}\} \in C^{+}({\mathcal{B}})\)and\(\boldsymbol{A}\in C^{\mathrm{Lin} ^{+}}({\mathcal{B}})\). Let\(\mathsf{R}_{\mathcal{P}}[\cdot , \boldsymbol{A}]\)be a F-differentiable functional foraccording to property (1) of Definition 4.1. Then, there exists\(\bar{\varphi }\in C ^{+}({\mathcal{B}})\)such that

    $$ \mathsf{R}_{{\mathcal{P}}}\bigl[\varphi ^{(1)}, \boldsymbol{A}\bigr] - \mathsf{R}_{{\mathcal{P}}}\bigl[\varphi ^{(2)}, \boldsymbol{A}\bigr] = \delta _{1}\mathsf{R}_{\mathcal{P}}\bigl[\bar{ \varphi }, \boldsymbol{A}|\, \varphi ^{(1)} - \varphi ^{(2)} \bigr]. $$
    (A.3)
  2. (2)

    Let\(\{\boldsymbol{A}^{(1)}, \boldsymbol{A}^{(2)}\} \in C ^{\mathrm{Lin}^{+}}({\mathcal{B}})\)be such that\(\boldsymbol{A} ^{(2)} + t(\boldsymbol{A}^{(1)} - \boldsymbol{A}^{(2)}) \in C^{ \mathrm{Lin}^{+}}({\mathcal{B}})\)for all\(t\in [0, 1]\), and let\(\varphi \in C^{+}({\mathcal{B}})\). Let\(\mathsf{R}_{ \mathcal{P}}[\varphi , \cdot ]\)be a F-differentiable functional foraccording to property (1) of Definition 4.1. Then, there exists\(\bar{\boldsymbol{A}} \in C^{\mathrm{Lin}^{+}}({\mathcal{B}})\)such that

    $$ \mathsf{R}_{{\mathcal{P}}}\bigl[\varphi , \boldsymbol{A}^{(1)} \bigr] - \mathsf{R}_{{\mathcal{P}}}\bigl[\varphi , \boldsymbol{A}^{(2)} \bigr] = \delta _{2}\mathsf{R}_{\mathcal{P}}\bigl[\varphi , \bar{ \boldsymbol{A}}|\, \boldsymbol{A}^{(1)} - \boldsymbol{A}^{(2)} \bigr]. $$
    (A.4)

Proof

To prove part (1), first note that \(\varphi _{t}:= \varphi ^{(2)} + t(\varphi ^{(1)} - \varphi ^{(2)}) \in C^{+}({\mathcal{B}})\) for all \(t \in [0,1]\). Now, define

$$ \omega (t):= \mathsf{R}_{{\mathcal{P}}}[\varphi _{t}, \boldsymbol{A}] \quad \forall t\in [0,1]. $$

Then, using the F-differentiability of \(\mathsf{R}_{{\mathcal{P}}}[ \cdot , \boldsymbol{A}]\) in (4.3a), and (A.2) in the proof of Lemma A.1, we reach

$$ \dot{\omega }(t) = \delta _{1}\mathsf{R}_{{\mathcal{P}}}\bigl[\varphi _{t}, \boldsymbol{A}|\, \varphi ^{(1)} - \varphi ^{(2)}\bigr], $$

and the elementary mean value theorem for real-valued functions implies that

$$ \omega (1) - \omega (0) = \dot{\omega }(\bar{t}) $$

for some \(\bar{t}\in [0,1]\), to complete the proof of (A.3).

To prove part (2), we first note that \(\boldsymbol{A}_{t}:= \boldsymbol{A}^{(2)} + t(\boldsymbol{A}^{(1)} - \boldsymbol{A}^{(2)}) \in C^{\mathrm{Lin}^{+}}({\mathcal{B}})\) for all \(t\in [0, 1]\). Then, defining

$$ \omega (t):= \mathsf{R}_{{\mathcal{P}}}[\varphi , \boldsymbol{A}_{t}] \quad \forall t\in [0,1], $$

and using the F-differentiability of \(\mathsf{R}_{{\mathcal{P}}}[ \varphi , \cdot ]\) in (4.3b) we may follow an argument similar to that used above to reach (A.4).  ■

Remark A.1

Note that if \(\{\varphi ^{(1)}, \varphi ^{(2)}\} \in C^{+}({\mathcal{B}}) \cap C^{1}({\mathcal{B}})\) in part (1) of Lemma A.2, then a similar argument shows that there exists a \(\bar{\varphi } \in C^{+}({\mathcal{B}})\cap C^{1}({\mathcal{B}})\) for which (A.3) holds.

Note, also, that if \(\boldsymbol{A}^{(1)}\) and \(\boldsymbol{A}^{(2)}\) in part (2) of Lemma A.2 are gradients of vector-valued functions, then \(\boldsymbol{A}_{t}\) is a gradient. This means that \(\bar{\boldsymbol{A}}\) in (A.4), being equal to \(\boldsymbol{A}_{\bar{t}}\) for some \(\bar{t} \in [0, 1]\), also is a gradient. □

Lemma A.3

Let\(\varphi \in C^{+}({\mathcal{B}})\cap C^{1}({\mathcal{B}})\)and\(\boldsymbol{A}\in C^{\mathrm{Lin}^{+}}({\mathcal{B}})\). Suppose that\(\mathsf{R}_{\mathcal{P}}[\cdot , \cdot ]\)is a F-differentiable functional foraccording to Definition4.1, and let

$$ \delta _{1}\mathsf{R}_{\mathcal{P}}[\varphi , \boldsymbol{A}|\, \psi ] = \delta _{1}\mathsf{R}_{\mathcal{P}}[0, \boldsymbol{A}| \; \psi ] $$
(A.5)

for all such\(\varphi \)and\(\boldsymbol{A}\), and for all\(\psi \in C^{1}({\mathcal{B}})\). Then,

$$ \mathsf{R}_{\mathcal{P}}[\varphi , \boldsymbol{A}] - \mathsf{R}_{\mathcal{P}}[0, \boldsymbol{A}] = \mathsf{L}_{ \mathcal{P}}[\boldsymbol{A}|\;\varphi ], $$

whereis continuous and F-differentiable, and\(\mathsf{L}_{\mathcal{P}}[\boldsymbol{A}|\;\cdot ]\)is linear for every\(\boldsymbol{A}\in C^{\mathrm{Lin}^{+}}({\mathcal{B}})\).

Proof

In part (1) of Lemma A.2, set

$$ \varphi ^{(1)} = \varphi , \qquad \varphi ^{(2)} = 0. $$

Then, because of Remark A.1 following Lemma A.2, we know that there exists a \(\bar{\varphi } \in C^{+}({\mathcal{B}})\cap C^{1}({\mathcal{B}})\) such that

$$ \mathsf{R}_{\mathcal{P}}[\varphi , \boldsymbol{A}] - \mathsf{R}_{ \mathcal{P}}[0, \boldsymbol{A}] = \delta _{1}\mathsf{R}_{\mathcal{P}}[\bar{ \varphi }, \boldsymbol{A}|\, \varphi ]. $$

This, together with the hypothesis (A.5), allows the conclusion

$$ \mathsf{R}_{\mathcal{P}}[\varphi , \boldsymbol{A}] - \mathsf{R}_{ \mathcal{P}}[0, \boldsymbol{A}] = \delta _{1}\mathsf{R}_{\mathcal{P}}[0, \boldsymbol{A}|\, \varphi ], $$

and by defining

$$ \mathsf{L}_{\mathcal{P}}[\boldsymbol{A}|\;\cdot ]:= \delta _{1} \mathsf{R}_{\mathcal{P}}[0, \boldsymbol{A}|\, \cdot ] $$

for every \(\boldsymbol{A}\in C^{\mathrm{Lin}^{+}}({\mathcal{B}})\), and recalling the property (1) of F-differentiability in Definition 4.1, we complete this proof.  ■

Lemma A.4

Let\(\varphi \in C^{+}({\mathcal{B}})\)and let\(\operatorname{\chi}\)and\(\boldsymbol{v}\)be smooth fields overwith\(\nabla \operatorname{\chi}\in \mathrm{Lin}^{+}\). Supposeis a continuous and F-differentiable functional foraccording to Definition4.1, so that for every\(\boldsymbol{A}\in C ^{\mathrm{Lin}^{+}}({\mathcal{B}})\)there exists\(\delta \mathsf{L}_{ \mathcal{P}}[\cdot |\, \cdot |\, \cdot ]\), linear in its second and third places, such that

$$ \mathsf{L}_{\mathcal{P}}[\boldsymbol{A}+ \boldsymbol{H}|\, \cdot ] = \mathsf{L}_{\mathcal{P}}[\boldsymbol{A}|\, \cdot ] + \delta \mathsf{L}_{\mathcal{P}}\bigl[\boldsymbol{A}|\, \cdot |\, \boldsymbol{H}\bigr] + o \bigl(\| \boldsymbol{H}\| \bigr) $$
(A.6)

for all\(\boldsymbol{H}\in C^{\mathrm{Lin}}({\mathcal{B}})\)with\(\boldsymbol{A}+ \boldsymbol{H}\in C^{\mathrm{Lin}^{+}}({\mathcal{B}})\). Finally, suppose

$$ \delta \mathsf{L}_{\mathcal{P}}[\nabla \operatorname{\chi}|\, \varphi |\, \nabla \boldsymbol{v}] = 0 $$
(A.7)

for all such\(\operatorname{\chi}\)and\(\boldsymbol{v}\). Then, there exists a linear functionalsuch that

$$ \mathsf{L}_{\mathcal{P}}[\nabla \operatorname{\chi}|\, \varphi ] = \mathsf{K}_{\mathcal{P}}[\varphi ]. $$

Proof

In part (2) of Lemma A.2, let us first identify \(\mathsf{R}_{\mathcal{P}}[\varphi , \boldsymbol{A}]\) with \(\mathsf{L}_{\mathcal{P}}[\boldsymbol{A}|\, \varphi ]\) and set

$$ \boldsymbol{A}^{(1)} = \nabla \operatorname{\chi}+ \nabla \boldsymbol{v},\qquad \boldsymbol{A}^{(2)} = \nabla \operatorname{\chi}. $$

Now, choose \(\operatorname{\chi}(\boldsymbol{X}) = \boldsymbol{X}\) and \(\boldsymbol{v}(\boldsymbol{X}) = (\lambda - 1)\boldsymbol{X}\), with \(\lambda > 0\). In this case, we have \(\boldsymbol{A}^{(1)} = \lambda \boldsymbol{\mathit{1}}\) and \(\boldsymbol{A}^{(2)} = \boldsymbol{\mathit{1}}\), which implies that \(\boldsymbol{A}_{t} = (1 + t(\lambda - 1) )\boldsymbol{\mathit{1}}\). Thus, \(\boldsymbol{A}_{t}\in \mathrm{Lin}^{+}\) is the gradient of a vector-valued function for all \(t\in [0,1]\), and we may use (A.4) (see also Remark A.1) to conclude that there exists \(\bar{\boldsymbol{A}}\in C^{\mathrm{Lin}^{+}}({\mathcal{B}})\) which is a gradient and such that

$$ \mathsf{L}_{\mathcal{P}}[\lambda \boldsymbol{\mathit{1}}|\, \varphi ] - \mathsf{L}_{\mathcal{P}}[\boldsymbol{\mathit{1}}|\, \varphi ] = \delta \mathsf{L}_{\mathcal{P}}\bigl[\bar{\boldsymbol{A}}|\, \varphi |\, ( \lambda - 1) \boldsymbol{\mathit{1}}\bigr]. $$

But, because of (A.7), the right hand side here vanishes, which implies

$$ \mathsf{L}_{\mathcal{P}}[\lambda \boldsymbol{\mathit{1}}|\, \varphi ] = \mathsf{L}_{\mathcal{P}}[\boldsymbol{\mathit{1}}|\, \varphi ]. $$

As a second choice, suppose \(\operatorname{\chi}\) is left unspecified with \(\nabla \operatorname{\chi}\in {\mathrm{Lin}^{+}}\), and \(\boldsymbol{v}( \boldsymbol{X}) = {\lambda \boldsymbol{X}- \operatorname{\chi}(\boldsymbol{X})}\), with \(\lambda > 0\). In this case, we have \(\boldsymbol{A}^{(1)} = \lambda \boldsymbol{\mathit{1}}\) and \(\boldsymbol{A}^{(2)} = \nabla \operatorname{\chi}\), which implies that \(\boldsymbol{A}_{t} = (1 - t)\nabla \operatorname{\chi}+ t \lambda \boldsymbol{\mathit{1}}\). Thus, for sufficiently small \(\lambda > 0\), we see that \(\boldsymbol{A}_{t}\in \mathrm{Lin}^{+}\), and is the gradient of a vector-valued function for all \(t\in [0,1]\). Again, we may use (A.4) (see also Remark A.1) to conclude that there exists \(\bar{\boldsymbol{A}}\in C^{\mathrm{Lin} ^{+}}({\mathcal{B}})\), the gradient of a vector-valued function, such that

$$ \mathsf{L}_{\mathcal{P}}[\lambda \boldsymbol{\mathit{1}}|\, \varphi ] - \mathsf{L}_{\mathcal{P}}[\nabla \operatorname{\chi}|\, \varphi ] = \delta \mathsf{L}_{\mathcal{P}}\bigl[\bar{\boldsymbol{A}}|\, \varphi |\, \lambda \boldsymbol{ \mathit{1}} - \nabla \operatorname{\chi}\bigr]. $$

But, again, the right hand side here vanishes because of (A.7), and we see that

$$ \mathsf{L}_{\mathcal{P}}[\lambda \boldsymbol{\mathit{1}}|\, \varphi ] = \mathsf{L}_{\mathcal{P}}[\nabla \operatorname{\chi}|\, \varphi ]. $$

From the above two choices, we take \(\lambda > 0\), sufficiently small, and conclude that

$$ \mathsf{L}_{\mathcal{P}}[\nabla \operatorname{\chi}|\, \varphi ] = \mathsf{L}_{ \mathcal{P}}[ \boldsymbol{\mathit{1}}|\, \varphi ] =: \mathsf{K}_{ \mathcal{P}}[\varphi ], $$

to complete this proof.  ■

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fosdick, R. A Causality Setting for Elasticity Theory. J Elast 135, 261–293 (2019). https://doi.org/10.1007/s10659-018-09718-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-018-09718-4

Keywords

Mathematics Subject Classification (2010)

Navigation