Skip to main content
Log in

Elastocapillary Coiling of an Elastic Rod Inside a Drop

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Capillary forces acting at the surface of a liquid drop can be strong enough to deform small objects and recent studies have provided several examples of elastic instabilities induced by surface tension. We present such an example where a liquid drop sits on a straight fiber, and we show that the liquid attracts the fiber which thereby coils inside the drop. We derive the equilibrium equations for the system, compute bifurcation curves, and show the packed fiber may adopt several possible configurations inside the drop. We use the energy of the system to discriminate between the different configurations and find a intermittent regime between two-dimensional and three-dimensional solutions as more and more fiber is driven inside the drop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Adda-Bedia, M., Boudaoud, A., Boué, L., Debœuf, S.: Statistical distributions in the folding of elastic structures. J. Stat. Mech. Theory Exp. 2010(11), P11027 (2010)

    Article  Google Scholar 

  2. Antman, S.S.: Nonlinear Problems of Elasticity, 2nd edn. Springer, New York (2004)

    Google Scholar 

  3. Arsuaga, J., Tan, R.K.Z., Vazquez, M., Sumners, D.W., Harvey, S.C.: Investigation of viral DNA packaging using molecular mechanics models. Biophys. Chem. 101–102, 475–484 (2002)

    Article  Google Scholar 

  4. Audoly, B., Pomeau, Y.: Elasticity and Geometry: From Hair Curls to the Non-linear Response of Shells. Oxford University Press, London (2010)

    MATH  Google Scholar 

  5. Bourgat, J.F., Le Tallec, P., Mani, S.: Modélisation et calcul des grands déplacements de tuyaux élastiques en flexion torsion. J. Méc. Théor. Appl. 7(4), 379–408 (1988)

    MathSciNet  MATH  Google Scholar 

  6. Chen, L., Yu, S., Wang, H., Xu, J., Liu, C., Chong, W.H., Chen, H.: General methodology of using oil-in-water and water-in-oil emulsions for coiling nanofilaments. J. Am. Chem. Soc. 135(2), 835–843 (2013)

    Article  Google Scholar 

  7. Cohen, A.E., Mahadevan, L.: Kinks, rings, and rackets in filamentous structures. Proc. Natl. Acad. Sci. USA 100(21), 12141–12146 (2003)

    Article  ADS  Google Scholar 

  8. de Gennes, P.G., Brochard-Wyard, F., Quere, D.: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer, New York (2003)

    MATH  Google Scholar 

  9. Doedel, E., Keller, H.B., Kernevez, J.P.: Numerical analysis and control of bifurcation problems (I): bifurcation in finite dimensions. Int. J. Bifurc. Chaos Appl. Sci. Eng. 1(3), 493–520 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Domokos, G., Healey, T.: Hidden symmetry of global solutions in twisted elastic rings. J. Nonlinear Sci. 11, 47–67 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Duprat, C., Protiere, S., Beebe, A.Y., Stone, H.A.: Wetting of flexible fibre arrays. Nature 482(7386), 510–513 (2012)

    Article  ADS  Google Scholar 

  12. Elettro, H., Vollrath, F., Antkowiak, A., Neukirch, S.: Coiling of an elastic beam inside a disk: a model for spider-capture silk. Int. J. Non-Linear Mech. 75, 59–66 (2015)

    Article  ADS  Google Scholar 

  13. Elettro, H., Neukirch, S., Antkowiak, A.: Negative stiffness regimes and coiling morphology signatures in drop-on-coilable-fiber systems (2016). In preparation

  14. Elettro, H., Neukirch, S., Vollrath, F., Antkowiak, A.: In-drop capillary spooling of spider capture thread inspires hybrid fibers with mixed solid–liquid mechanical properties. Proc. Natl. Acad. Sci. USA 113(22), 6143–6147 (2016)

    Article  ADS  Google Scholar 

  15. Fargette, A., Neukirch, S., Antkowiak, A.: Elastocapillary snapping: capillarity induces snap-through instabilities in small elastic beams. Phys. Rev. Lett. 112(13), 137802 (2014)

    Article  ADS  Google Scholar 

  16. Katzav, E., Adda-Bedia, M., Boudaoud, A.: A statistical approach to close packing of elastic rods and to DNA packaging in viral capsids. Proc. Natl. Acad. Sci. USA 103(50), 18900–18904 (2006)

    Article  ADS  Google Scholar 

  17. Kehrbaum, S., Maddocks, J.H.: Elastic rods, rigid bodies, quaternions and the last quadrature. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 355(1732), 2117–2136 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. LaMarque, J.C., Le, T.V., Harvey, S.C.: Packaging double-helical DNA into viral capsids. Biopolymers 73(3), 348–355 (2004)

    Article  Google Scholar 

  19. Leforestier, A., Livolant, F.: Structure of toroidal DNA collapsed inside the phage capsid. Proc. Natl. Acad. Sci. USA 106(23), 9157–9162 (2009)

    Article  ADS  Google Scholar 

  20. Lorenceau, É., Clanet, C., Quéré, D.: Capturing drops with a thin fiber. J. Colloid Interface Sci. 279(1), 192–197 (2004)

    Article  Google Scholar 

  21. Martel, R., Shea, H.R., Avouris, P.: Rings of single-walled carbon nanotubes. Nature 398(6725), 299 (1999)

    Article  ADS  Google Scholar 

  22. Neukirch, S., Henderson, M.E.: Classification of the spatial clamped elastica: symmetries and zoology of solutions. J. Elast. 68, 95–121 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Neukirch, S., Roman, B., de Gaudemaris, B., Bico, J.: Piercing a liquid surface with an elastic rod: buckling under capillary forces. J. Mech. Phys. Solids 55(6), 1212–1235 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  24. Py, C., Reverdy, P., Doppler, L., Bico, J., Roman, B., Baroud, C.N.: Capillary origami: spontaneous wrapping of a droplet with an elastic sheet. Phys. Rev. Lett. 98(15), 156103 (2007)

    Article  ADS  MATH  Google Scholar 

  25. Roman, B., Bico, J.: Elasto-capillarity: deforming an elastic structure with a liquid droplet. Phys. Condens. Matter 22(49), 493101 (2010)

    Article  Google Scholar 

  26. Steigmann, D.J., Faulkner, M.G.: Variational theory for spatial rods. J. Elast. 33(1), 1–26 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Stoop, N., Najafi, J., Wittel, F.K., Habibi, M., Herrmann, H.J.: Packing of elastic wires in spherical cavities. Phys. Rev. Lett. 106, 214102 (2011)

    Article  ADS  Google Scholar 

  28. van der Heijden, G.H.M., Peletier, M.A., Planqué, R.: On end rotation for open rods undergoing large deformations. Q. Appl. Math. 65(2), 385–402 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Vetter, R., Wittel, F., Stoop, N., Herrmann, H.: Finite element simulation of dense wire packings. Eur. J. Mech. A, Solids 37, 160–171 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Vollrath, F., Edmonds, D.T.: Modulation of the mechanical properties of spider silk by coating with water. Nature 340, 305–307 (1989)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Camille Dianoux and Sinan Haliyo for their help on microscopy, and Arnaud Antkowiak for comments on the variational approach. The present work was supported by ANR grant ANR-09-JCJC-0022-01, ANR-14-CE07-0023-01, and ANR-13-JS09-0009. Financial support from ‘La Ville de Paris—Programme Émergence’ and CNRS, through a PEPS-PTI grant, is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Neukirch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elettro, H., Grandgeorge, P. & Neukirch, S. Elastocapillary Coiling of an Elastic Rod Inside a Drop. J Elast 127, 235–247 (2017). https://doi.org/10.1007/s10659-016-9611-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-016-9611-4

Keywords

Mathematics Subject Classification

Navigation