Skip to main content
Log in

Surface Constrained Elastic Rods with Application to the Sphere

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The unilateral contact between an elastic rod and a rigid surface is encountered in numerous biological and engineering applications. Along continuous contacts, the centerline of the rod reflects the geometry of the constraining surface. This restriction of the rod axis to surface bound configurations enters its local equilibrium through a reaction pressure which ensures the compatibility between the deformation and the restraint geometry. The classic equations governing the static equilibrium of elastic rods are particularized to surface bound configurations by (i) specifying the location of the rod axis in terms of its coordinates in the parameter space associated with the constraining surface parameterization, and (ii) characterizing the orientation of its material frame through its rotation with respect to the surface normal. This formulation, which emphasizes the relations between the rod configuration and the geometry of the constraint, also leads to an expression for the reaction pressure. This approach is then validated on a spherical surface by comparing with known solutions for elastic curves, i.e., inextensible and twist free rods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Geodesics extend the notion of straight lines to curved space and are interpreted as the shortest curve among all piecewise-differentiable curves on \(\mathscr{S}\) connecting two points [19, ch. 26]. Mathematically, a geodesic is a curve which is everywhere locally a distance minimizer. These surface curves are identified as lines of zero geodesic curvature such that, along geodesics, the rod bending energy solely arises from the normal curvature.

References

  1. Antman, S.: Nonlinear Problems of Elasticity, vol. 107, 3rd edn. Springer, Berlin (2005). Chap. 8

    MATH  Google Scholar 

  2. Audoly, B., Pomeau, Y.: Elasticity and Geometry: From Hair Curls to the Non-linear Response of Shells. Oxford University Press, London (2010)

    MATH  Google Scholar 

  3. Bergou, M., Audoly, B., Vouga, E., Wardetzky, M., Grinspun, E.: Discrete viscous threads. ACM Trans. Graph. 29(4), 1–10 (2010)

    Article  Google Scholar 

  4. Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., Grinspun, E.: Discrete elastic rods. ACM Trans. Graph. 27(3) (2008). doi:10.1145/1399504.1360662

  5. Brunnett, G.: The curvature of plane elastic curves. NASA STI/Recon Technical Report N 93, 28516 (1993)

  6. Brunnett, G., Crouch, P.E.: Elastic curves on the sphere. Adv. Comput. Math. 2(1), 23–40 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Champneys, A.R., van der Heijden, G.H.M., Thompson, J.M.T.: Spatially complex localization after one-twist-per-wave equilibria in twisted circular rods with initial curvature. Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 355(1732), 2151–2174 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Chen, J.-S., Li, C.-W.: Planar elastica inside a curved tube with clearance. Int. J. Solids Struct. 44(18–19), 6173–6186 (2007)

    Article  MATH  Google Scholar 

  9. Cosserat, E., Cosserat, F.: Théorie des Corps Déformables, Chap. 2. Librairie Scientifique A. Hermann et fils, Paris (1909)

    MATH  Google Scholar 

  10. da Fonseca, A.F., de Aguiar, M.A.: Solving the boundary value problem for finite Kirchhoff rods. Physica D 181(1–2), 53–69 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Denoël, V.: Advantages of a semi-analytical approach for the analysis of an evolving structure with contacts. Commun. Numer. Methods Eng. 24(12), 1667–1683 (2008)

    Article  MATH  Google Scholar 

  12. Dill, E.: Kirchhoff’s theory of rods. Arch. Hist. Exact Sci. 44(1), 1–23 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice Hall, New York (1976)

    MATH  Google Scholar 

  14. Domokos, G., Holmes, P., Royce, B.: Constrained Euler buckling. J. Nonlinear Sci. 7, 281–314 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Donato, C.C., Gomes, M.A.F., de Souza, R.E.: Scaling properties in the packing of crumpled wires. Phys. Rev. E 67, 026110 (2003)

    Article  ADS  Google Scholar 

  16. Gomes, M.A.F., Brito, V.P., Araújo, M.S.: Geometric properties of crumpled wires and the condensed non-solid packing state of very long molecular chains. J. Braz. Chem. Soc. 19, 293–298 (2008)

    Article  Google Scholar 

  17. Goriely, A., Neukirch, S.: Mechanics of climbing and attachment in twining plants. Phys. Rev. Lett. 97, 184302 (2006)

    Article  ADS  Google Scholar 

  18. Goriely, A., Robertson-Tessi, M., Tabor, M., Vandiver, R.: Elastic growth models. In: Mathematical Modelling of Biosystems. Applied Optimization, vol. 102, pp. 1–44. Springer, Berlin (2008)

    Chapter  Google Scholar 

  19. Gray, A.: Modern Differential Geometry of Curves and Surfaces with Mathematica. CRC Press, Boca Raton (1996)

    Google Scholar 

  20. Guven, J., María Valencia, D., Vázquez-Montejo, P.: Environmental bias and elastic curves on surfaces. J. Phys. A, Math. Gen. 47, I5201 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guven, J., Vázquez-Montejo, P.: Confinement of semiflexible polymers. Phys. Rev. E 85, 026603 (2012)

    Article  ADS  Google Scholar 

  22. Huynen, A., Detournay, E., Denoël, V.:. Eulerian formulation of elastic rod (2015, in preparation)

  23. Inglis, T.: Directional Drilling, vol. 2. Springer, Berlin (1988)

    Google Scholar 

  24. LaMarque, J.C., Le, T.-v.L., Harvey, S.C.: Packaging double-helical dna into viral capsids. Biopolymers 73(3), 348–355 (2004)

    Article  Google Scholar 

  25. Langer, J., Singer, D.A.: Knotted elastic curves in \(R^{3}\). J. Lond. Math. Soc. 30, 512–520 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  26. Langer, J., Singer, D.A.: The total squared curvature of closed curves. J. Differ. Geom. 20(1), 1–22 (1984)

    MathSciNet  MATH  Google Scholar 

  27. Langer, J., Singer, D.A.: Lagrangian aspects of the Kirchhoff elastic rod. SIAM Rev. 38(4), 605–618 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lee, E.H., Forsythe, G.E.: Variational study of nonlinear spline curves. SIAM Rev. 15(1), 120–133 (1973)

    Article  MathSciNet  Google Scholar 

  29. Levien, R.: The elastica: a mathematical history. Technical Report UCB/EECS-2008-103, EECS Department, University of California, Berkeley (2008)

  30. Li, S.-Y., Chen, J.-S.: A twisted elastica constrained inside a tube. Eur. J. Mech. A, Solids 44(0), 61–74 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  31. Love, A.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Cambridge University Press, Cambridge (1927)

    MATH  Google Scholar 

  32. Nickerson, H., Manning, G.: Intrinsic equations for a relaxed elastic line on an oriented surface. Geom. Dedic. 27(2), 127–136 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nizette, M., Goriely, A.: Towards a classification of Euler–Kirchhoff filaments. J. Math. Phys. 40, 2830 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Odijk, T.: Statics and dynamics of condensed dna within phages and globules. Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 362(1820), 1497–1517 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Olver, F.W.J., Lozier, D.W., Boisvert, R.F.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  36. Pressley, A.: Elementary Differential Geometry. Springer, London (2010)

    Book  MATH  Google Scholar 

  37. Sampaio, J.H.B.: Drilling Engineering. Curtin University of Technology, Department of Petroleum Engineering, Bentley (2008)

    Google Scholar 

  38. Schneider, P.: Endovascular Skills: Guidewire and Catheter Skills for Endovascular Surgery. CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  39. Shi, Y., Hearst, J.: The Kirchhoff elastic rod, the nonlinear Schrödinger equation, and DNA supercoiling. J. Chem. Phys. 101, 5186 (1994)

    Article  ADS  Google Scholar 

  40. Stoop, N., Najafi, J., Wittel, F.K., Habibi, M., Herrmann, H.J.: Packing of elastic wires in spherical cavities. Phys. Rev. Lett. 106, 214102 (2011)

    Article  ADS  Google Scholar 

  41. Swigon, D., Coleman, B.D., Tobias, I.: The elastic rod model for DNA and its application to the tertiary structure of DNA minicircles in mononucleosomes. Biophys. J. 74(5), 2515–2530 (1998)

    Article  ADS  Google Scholar 

  42. Tobias, I., Swigon, D., Coleman, B.D.: Elastic stability of DNA configurations. I. General theory. Phys. Rev. E 61, 747–758 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  43. Travers, A.A., Thompson, J.M.T.: An introduction to the mechanics of DNA. Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 362(1820), 1265–1279 (2004)

    Article  ADS  MATH  Google Scholar 

  44. Tu, X., Manohar, S., Jagota, A., Zheng, M.: DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460(7252), 250–253 (2009)

    Article  ADS  Google Scholar 

  45. van der Heijden, G.: The static deformation of a twisted elastic rod constrained to lie on a cylinder. Proc. R. Soc., Math. Phys. Eng. Sci. 457(2007), 695–715 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. van der Heijden, G., Champneys, A., Thompson, J.: Spatially complex localisation in twisted elastic rods constrained to lie in the plane. J. Mech. Phys. Solids 47(1), 59–79 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  47. van der Heijden, G., Thompson, J.: Helical and localised buckling in twisted rods: a unified analysis of the symmetric case. Nonlinear Dyn. 21(1), 71–99 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

A. Huynen was supported by the National Fund for Scientific Research of Belgium and the W.T. Bennett Chair at the University of Minnesota.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Huynen.

Appendix: Closed Elastica on the Sphere

Appendix: Closed Elastica on the Sphere

1.1 A.1 Components of \(\boldsymbol{\varsigma} (\xi )\) in the Cylindrical Coordinate System

In the cylindrical coordinate system, the scaled position vector and the unit tangent to the elastica axis read \(\boldsymbol{\varsigma} (\xi )=\varrho \boldsymbol{e}_{\varrho}+\zeta \boldsymbol {e}_{\zeta}\) and \(\boldsymbol{\varsigma}' (\xi )=\varrho' \boldsymbol {e}_{\varrho}+\varrho \vartheta' \boldsymbol{e}_{\vartheta}+\zeta' \boldsymbol{e}_{\zeta}\), respectively. The constant vector \(\boldsymbol{\mathcal{I}}=\mathcal {I} \boldsymbol{e}_{\zeta}\), aligned with the \(\zeta\)-axis, may alternatively be decomposed in the Darboux frame \(\{ \boldsymbol{d}_{3},\boldsymbol{N}\times \boldsymbol{d}_{3},\boldsymbol{N} \} \) as

$$\begin{aligned} \boldsymbol{\mathcal{I}} & = (\mathcal{M}_{3}+\mathcal{F}_{g} )\boldsymbol{d}_{3}- (\mathcal{F}_{3}+1 )\boldsymbol{N}\times \boldsymbol{d}_{3}+\varkappa_{g}\boldsymbol{N}, \end{aligned}$$
(65)

since \(\boldsymbol{N}\times\boldsymbol{\mathcal{F}}=\mathcal {F}_{3}\boldsymbol{N}\times\boldsymbol{d}_{3}-\mathcal{F}_{g}\boldsymbol {d}_{3}\). Hence, projecting this vector on the scaled position vector \(\boldsymbol {\varsigma} (\xi )\) leads to

$$\begin{aligned} \boldsymbol{\mathcal{I}}\cdot\boldsymbol{\varsigma} & =-\varkappa _{g}, \end{aligned}$$
(66)
$$\begin{aligned} & =\mathcal{I} \zeta, \end{aligned}$$
(67)

which reduces to the relation (56.a). Alternatively, the vector product between \(\boldsymbol{\mathcal{I}}\) and \(\boldsymbol{\varsigma}'\) reads \(\boldsymbol{\mathcal{I}}\times \boldsymbol{\varsigma}'=-\mathcal{I} (\varrho \vartheta' \boldsymbol{e}_{\varrho}-\varrho' \boldsymbol{e}_{\vartheta} )\), in the cylindrical coordinate system, or \(\boldsymbol{\mathcal{I}}\times \boldsymbol{\varsigma}'=\varkappa_{g}\boldsymbol{N}\times\boldsymbol {d}_{3}+ (\mathcal{F}_{3}+1 )\boldsymbol{N}\), in the Darboux frame. Therefore, taking the dot product of both expressions with the scaled position vector yields

$$\begin{aligned} \bigl(\boldsymbol{\mathcal{I}}\times\boldsymbol{\varsigma}' \bigr) \cdot \boldsymbol{\varsigma} & =-\mathcal{I} \varrho^{2} \vartheta', \end{aligned}$$
(68)
$$\begin{aligned} & =- (\mathcal{F}_{3}+1 ), \end{aligned}$$
(69)

which, taking into account expression (49.c), reduces to the relation (56.b).

1.2 A.2 Magnitude of the Constant Vector \(\boldsymbol{\mathcal {I}}\)

Equation (50) may be integrated to obtain

$$\begin{aligned} \bigl(\varkappa_{g}' \bigr)^{2} & =C_{1}-\frac{1}{4} \bigl(\varkappa _{g}^{4}-2 \sigma \varkappa_{g}^{2} \bigr), \end{aligned}$$
(70)

where \(C_{1}\) is a constant of integration. As a global maximum point, \(\xi_{m}\), of the squared geodesic curvature \(\varkappa_{g}^{2}\) is a zero of \(\varkappa_{g}'\), this constant reads

$$\begin{aligned} C_{1} & =\frac{1}{4} \bigl(\varkappa_{m}^{4}-2 \sigma \varkappa _{m}^{2} \bigr), \end{aligned}$$
(71)

such that expression (70) reduces to

$$\begin{aligned} \bigl(\varkappa_{g}' \bigr)^{2} & = \frac{1}{4} \bigl(\varkappa _{m}^{2}- \varkappa_{g}^{2} \bigr) \bigl(\varkappa_{g}^{2}+ \varkappa _{m}^{2}-2 \sigma \bigr). \end{aligned}$$
(72)

As the term \((\varkappa_{m}^{2}-\varkappa_{g}^{2} )\) is always non-negative, the term \((\varkappa_{g}^{2}+\varkappa _{m}^{2}-2 \sigma )\) has also to be non-negative for any \(\varkappa_{g}^{2}\), that is \(\varkappa_{m}^{2}\geq\sigma\). Computing the magnitude of the constant vector \(\boldsymbol{\mathcal{I}}=\boldsymbol{\mathcal{M}}-\boldsymbol {N}\times\boldsymbol{\mathcal{F}}\) is then straightforward

$$\begin{aligned} \boldsymbol{\mathcal{I}}\cdot\boldsymbol{\mathcal{I}} & = \bigl(\varkappa _{g}' \bigr)^{2}+\frac{1}{4} \bigl[ \varkappa_{g}^{2} \bigl(\varkappa _{g}^{2}-2 \sigma \bigr)+ (2+\sigma )^{2} \bigr], \end{aligned}$$
(73)

which, accounting for expression (72), reduces to (57).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huynen, A., Detournay, E. & Denoël, V. Surface Constrained Elastic Rods with Application to the Sphere. J Elast 123, 203–223 (2016). https://doi.org/10.1007/s10659-015-9555-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-015-9555-0

Keywords

Mathematics Subject Classification

Navigation