Skip to main content
Log in

Effectiveness of Lr34 gene in reducing leaf rust severity in wheat cultivar BRW 934 transferred through marker-assisted backcross

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Leaf rust caused by Puccinia triticina Eriks. is one of the yield constraining diseases of wheat. It is prevalent in almost all wheat growing areas of the world. Durable leaf rust resistance conferred by integration of slow rusting and effective major genes is the best strategy to combat this disease. In the present study a slow rusting gene, Lr34 was transferred into a heat tolerant wheat variety BRW 934 using marker-assisted back crossing. The BRW 934 was found highly susceptible to several Indian pathotypes of P. triticina including 12–2, 77–1, 77–5, 77–7, 77–8, 77–9, 77–10 and 104–2. The selection of the Lr34 gene was carried out using STS (sequence tagged site) marker csLV34. BC1F1 plants carrying Lr34 gene showed leaf rust scores ranging from 5 to 20MR and rust score in the BRW 934 progenies without the Lr34 gene were 30S-100S. Presence of the Lr34 gene significantly reduced disease severity in the progenies. Maximum recovery (87.5%) of the recurrent parent genome was obtained in plant number 16 and 30 in the BC1F1 generation. These findings indicated that the Lr34 gene can be effectively used in developing leaf rust resistant wheat lines for the Eastern-Gangetic plains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data that support the present findings can be made available on request to the corresponding author.

References

  • Ahmad, S., Khan, M. A., Haider, M. M., Iqbal, Z., Iftikhar, Y., & Hussain, M. (2010). Comparison of yield loss in different wheat varieties/lines due to leaf rust disease. Pakistan Journal of Phytopathology, 22(1), 13–15.

    Google Scholar 

  • Appel, J.A., DeWolf, E., Bockus, W.W., Todd, T. (2009). Kansas cooperative plant disease survey report preliminary Kansas wheat disease loss estimates. http://www.ksda.gov/includes/document_center/plant_protection. Accessed 29 Nov 2010

  • Benchimol, L., Souza, C. L. D., Jr., & Souza, A. P. D. (2005). Microsatellite-assisted backcross selection in maize. Genetics and Molecular Biology, 28, 789–797.

    Article  Google Scholar 

  • Bhardwaj, S. C., Gangwar, O. P., Prasad, P., Kumar, S., Khan, H., & Gupta, N. (2019). Physiologic specialization and shift in Puccinia triticina pathotypes on wheat in Indian subcontinent during 2013–2016. Indian Phytopathology, 72, 23–34.

    Article  Google Scholar 

  • Bjarko, M. E., & Line, R. F. (1988). Heritability and number of genes controlling leaf rust resistance in four cultivars of wheat. Phytopathology, 78, 457–461. https://doi.org/10.1094/Phyto-78-457

    Article  Google Scholar 

  • Dyck, P. L., & Samborski, D. J. (1982). The inheritance of resistance to Puccinia recondita in a group of common wheat cultivars. Canadian Journal of Genetics and Cytology, 24, 273–283.

    Article  Google Scholar 

  • German, S., Kohli, M., Chaves, M., Barcellos, A., Nisi, J., Annone, J., Madariaga, R., Viedma, L. Q. (2004). Breakdown of resistance of wheat cultivars and estimated losses caused by recent changes in the leaf rust population in South America. In: Proceedings of 11th international cereal rusts and powdery mildews conference abstract. John Innes Centre, Norwich, England, UK, pp A2.21.

  • German, S. F., & Kolmer, J. A. (1992). Effect of gene Lr34 in the enhancement of resistance to leaf rust of wheat. Theoretical and Applied Genetics, 84, 97–105.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, A. K., Saini, R. G., Gupta, S., & Malhotra, S. (1984). Genetic analysis of two wheat cultivars, ‘Sonalika’ and ‘WL 711’ for reaction to leaf rust (Puccinia recondita). Theoretical and Applied Genetics, 67, 215–217. https://doi.org/10.1007/BF00317039

    Article  CAS  PubMed  Google Scholar 

  • Gurjar, M. S., Aggarwal, R., Banerjee, S., Bag, T. K., & Prashar, M. (2014). Identification and validation of leaf rust resistance genes in Indian wheat genotypes using molecular markers. Indian Phytopathology, 67(4), 358–364.

    Google Scholar 

  • Herrera-Foessel, S. A., Lagudah, E. S., Huerta-Espino, J., Hayden, M. J., Bariana, H. S., Singh, D., & Singh, R. P. (2011). New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theoretical and Applied Genetics, 122, 239–249. https://doi.org/10.1007/s00122-010-1439-x

    Article  PubMed  Google Scholar 

  • Herrera-Foessel, S. A., Singh, R. P., Huerta-Espino, J., Rosewarne, G. M., Periyannan, S. K., Viccars, L., Calvo-Salazar, V., Lan, C., & Lagudah, E. S. (2012). Lr68: A new gene conferring slow rusting resistance to leaf rust in wheat. Theoretical and Applied Genetics, 124, 1475–1486. https://doi.org/10.1007/s00122-012-1802-1

    Article  CAS  PubMed  Google Scholar 

  • Huerta-Espino, J., Singh, R. P., German, S., McCallum, B. D., Park, R. F., Chen, W. Q., Bharadwaj, S. C., & Goyeau, H. (2011). Global status of wheat leaf rust caused by Puccinia triticina. Euphytica, 179, 143–160.

    Article  Google Scholar 

  • Joshi, L. M., & Pathak, K. D. (1975). Loss in yield due to brown rust (Puccinia reconduct Desm) on late sown wheat crop. Indian Journal Agronomy, 20, 79–81.

    Google Scholar 

  • Joshi, L.M., Singh, D.V., Srivastava, K.D. (1984). Fluctuations in the incidence of rusts and other wheat diseases during past decade and strategies for their containment. In 23rd All India Wheat Research Workers Workshop (ICAR) held at Kanpur, p. 132.

  • Krattinger, S. G., Lagudah, E. S., Spielmeyer, W., Singh, R. P., Huerta-Espino, J., McFadden, H., & Keller, B. (2009). A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 323, 1360–1363.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, J., Mir, R. R., Kumar, N., Kumar, A., Mohan, A., Prabhu, K. V., Balyan, H. S., & Gupta, P. K. (2010). Marker-assisted selection for pre-harvest sprouting tolerance and leaf rust resistance in bread wheat. Plant Breeding, 129, 617–621.

    Article  CAS  Google Scholar 

  • Kumar, V., Prasad, A., Roy, C., & Chattopadhyay, T. (2018). Validation of a simple and rapid method for isolating genomic DNA from medicinal and aromatic plants for subsequent polymerase chain reaction. International Journal of Current Microbiology and Applied Science, 7(8), 2562–2566.

    Article  CAS  Google Scholar 

  • Kumar, S., Bhardwaj, S. C., Gangwar, O. P., Sharma, A., Qureshi, N., Kumaran, V. V., Khan, H., Prasad, P., Miah, H., Singh, G. P., Sharma, K., Verma, H., Forrest, K. L., Trethowan, R. M., Bariana, H. S., & Bansal, U. K. (2021). Lr80: A new and widely effective source of leaf rust resistance of wheat for enhancing diversity of resistance among modern cultivars. Theoretical and Applied Genetics, 134, 849–858. https://doi.org/10.1007/s00122-020-03735-5

    Article  CAS  PubMed  Google Scholar 

  • Lagudah, E. S., McFadden, H., Singh, R. P., Huerta-Espino, J., Bariana, H. S., & Spielmeyer, W. (2006). Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theoretical and Applied Genetic, 114, 21–30.

    Article  CAS  Google Scholar 

  • Lillemo, M., Joshi, A. K., Prasad, R., Chand, R., & Singh, R. P. (2013). QTL for spot blotch resistance in bread wheat line Saar co-locate to the biotrophic disease resistance loci Lr34 and Lr46. Theoretical and Applied Genetic, 126, 711–719.

    Article  CAS  Google Scholar 

  • McCallum, B. D., & Hiebert, C. W. (2022). Interactions between Lr67 or Lr34 and other leaf rust resistance genes in wheat (Triticum aestivum). Frontiers in Plant Science, 13, 871970. https://doi.org/10.3389/fpls.2022.871970

    Article  PubMed  PubMed Central  Google Scholar 

  • Mottaleb, K. A., Kruseman, G., Frija, A., Sonder, K., & Lopez-Ridaura, S. (2023). Projecting wheat demand in China and India for 2030 and 2050: Implications for food security. Frontiers in Nutrition, 9, 1077443. https://doi.org/10.3389/fnut.2022.1077443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthe, S. T., Kulwal, P. L., Gadekar, D. A., & Jadhav, A. S. (2016). Molecular marker based detection of leaf rust resistance gene Lr34 in Indian bread wheat (Triticum aestivum L.). Australasian Plant Pathology, 45(4), 369–376. https://doi.org/10.1007/s13313-016-0423-6

    Article  CAS  Google Scholar 

  • Narendra, M. C., Roy, C., Kumar, S., & De, N. (2020). Identification of suitable trait index for selection of heat tolerant wheat (Triticum aestivum) genotypes. Indian Journal of Agricultural Sciences, 90(6), 1068–1071.

    Article  Google Scholar 

  • Narendra, M. C., Roy, C., Kumar, S., Virk, P., & De, N. (2021). Effect of terminal heat stress on physiological traits, grain zinc and iron content in wheat (Triticum aestivum l.). Czech Journal of Genetics and Plant Breeding, 57, 43–50. https://doi.org/10.17221/63/2020-CJGPB

    Article  CAS  Google Scholar 

  • Neupane, R. B., Sharma, R. C., Duveiller, E., Ortiz-Ferrara, G., Ojha, B. R., Rosyara, U. R., Bhandari, D., Bhatta, M. R. (2007). Major gene controls of field resistance to spot blotch in wheat genotypes ‘Milan/Shanghai #7’ and ‘Chirya.3’. Plant Disease, 91(6), 692–697. https://doi.org/10.1094/PDIS-91-6-0692

  • Pawar, S. K., Kumar, P., Duhan, J. S., Saharan, M. S., Bharadwaj, S. C., Tiwari, R., & Sharma, I. (2013). Characterization of adult plant leaf rust resistance gene Lr34 in Indian wheat genotypes using an STS marker. Journal of Wheat Research, 5(1), 15–20.

    Google Scholar 

  • Peterson, R. F., Campbell, A. B., and Hannah, A. E. (1948). A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Canadian Journal of Research, 26c, 496–500. https://doi.org/10.1139/cjr48c-033

  • Pinto da Silva, G. B., Zanella, C. M., Martinelli, J. A., Chaves, M. S., Hiebert, C. W., McCallum, B. D., & Boyd, L. A. (2018). Quantitative trait loci conferring leaf rust resistance in hexaploidy wheat. Phytopathology, 108, 1344–1354. https://doi.org/10.1094/PHYTO-06-18-0208-RVW

    Article  PubMed  Google Scholar 

  • Prasad, P., Bhardwaj, S. C., Gangwar, O. P., Kumar, S., Khan, H., Kumar, S., Rawal, H. C., & Sharma, T. R. (2017). Population differentiation of wheat leaf rust fungus Puccinia triticina in South Asia. Current Science, 112(10), 2073–2084.

    Article  Google Scholar 

  • Prasad, P., Savadi, S., Bhardwaj, S. C., & Gupta, P. K. (2020). The progress of leaf rust research in wheat. Fungal Biology, 124(6), 537–550. https://doi.org/10.1016/j.funbio.2020.02.013

    Article  CAS  PubMed  Google Scholar 

  • Prasad, P., Khan, H., Bhardwaj, S. C., Savadi, S., Gangwar, O.P., Kumar, S. (2021). Practical manual on protocols and methodologies in wheat rusts research (New Delhi, India: Directorate of Knowledge Management in Agriculture, I.C.A.R.), 1–76.

  • Priyamvada, T. R., Saharan, M. S., Charath, R., Siwach, P., & Mishra, B. (2009). STS marker based tracking of slow rusting Lr34 gene in Indian wheat genotypes. Indian Journal of Biotechnology, 8, 207–213.

    CAS  Google Scholar 

  • Roy, C., Chattopadhyay, T., Ranjan, R. D., Hasan, W. U., Kumar, A., & De, N. (2021). Association of leaf chlorophyll content with the stay-green trait and grain yield in wheat grown under heat stress conditions. Czech Journal of Genetics and Plant Breeding, 57(4), 140–148. https://doi.org/10.17221/45/2021-CJGPB

    Article  CAS  Google Scholar 

  • Singh, R. P. (1992a). Association between gene Lr34 for leaf rust resistance and leaf tip necrosis in wheat. Crop Science, 32, 874–878.

    Article  Google Scholar 

  • Singh, R. P. (1992b). Genetic association of leaf rust resistance gene Lr34 with adult plant resistance to stripe rust in bread wheat. Phytopathology, 82, 835–838.

    Article  Google Scholar 

  • Singh, R. P., Mujeeb-Kazi, A., & Huerta-Espino, J. (1998). Lr46: A gene conferring slow-rusting resistance to leaf rust in wheat. Phytopathology, 88, 890–894.

    Article  CAS  PubMed  Google Scholar 

  • Singh, R. P., Huerta-Espino, J., Pfeiffer, W., & Figueroa-Lopez, P. (2004a). Occurrence and impact of a new leaf rust race on durum wheat in northwestern Mexico from 2001 to 2003. Plant Disease, 88, 703–708.

    Article  CAS  PubMed  Google Scholar 

  • Singh, R.P., William, H.M., Huerta-Espino, J., & Rosewarne, G. (2004b). Wheat Rust in Asia: Meeting the Challenges with Old and New Technologies. Proceedings of the 4th International Crop Science Congress, 26 Sep – 1 Oct 2004, Brisbane, Australia, p 1–13.

  • Spielmeyer, W., McIntosh, R. A., Kolmer, J. E., & Lagudah, E. S. (2005). Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theoretical and Applied Genetics, 111, 731–735. https://doi.org/10.1007/s00122-005-2058-9

    Article  CAS  PubMed  Google Scholar 

  • Vasistha, N. K., Balasubramaniam, A., Mishra, V. K., Srinivasa, J., Chand, R., & Joshi, A. K. (2017). Molecular introgression of leaf rust resistance gene Lr34 validates enhanced effect on resistance to spot blotch in spring wheat. Euphytica, 213, 262. https://doi.org/10.1007/s10681-017-2051-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding received from BAU, Sabour to CR is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Roy.

Ethics declarations

Conflict of interest

Authors have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, V.K., Roy, C. & Prasad, P. Effectiveness of Lr34 gene in reducing leaf rust severity in wheat cultivar BRW 934 transferred through marker-assisted backcross. Eur J Plant Pathol (2024). https://doi.org/10.1007/s10658-024-02857-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10658-024-02857-6

Keywords

Navigation