Skip to main content
Log in

Gymnosporangium species occurring on Juniperus and Pyrus in Latvia and evidence for Gymnosporangium clavariiforme infecting European pear (Pyrus communis)

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The European pear (Pyrus communis) is an economically significant fruit crop. Sustainable pear cultivation is negatively affected by European pear rust caused by Gymnosporangium sabinae. The current knowledge on the variability of the pathogen and host resistance is insufficient, limiting the implementation of successful plant protection methods. This study aimed to identify Gymnosporangium species occurring in Latvia on junipers (Juniperus) and P. communis with a focus on possible hosts of G. sabinae and to assess the pathogen’s genetic diversity and pathogenicity as well as their geographic origin. Based on a large sample across the country, morphological characterization and sequences of three loci, three species were found: G. sabinae on J. sabina and P. communis, G. clavariiforme on J. communis, and G. cornutum on J. communis and Sorbus aucuparia. Resistant genotypes among seedlings consistently showed no disease symptoms in inoculation experiments, confirming the presence of resistance to G. sabinae in P. communis. Pathogenicity of G. clavariiforme on P. communis was tested and confirmed by inoculation with basidiospore inoculum from J. sabina. The methodology tested and obtained results obtained in this study using artificial inoculation will support further studies of G. sabinae and P. communis interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data available on request from the authors.

References 

  • Abbasi, M., Goodwin, S. B., & Scholler, M. (2005). Taxonomy, phylogeny, and distribution of Puccinia graminis, the black stem rust: new insights based on rDNA sequence data. Mycoscience, 46, 241–247.

    Article  CAS  Google Scholar 

  • Aldwinckle, H. S., Lamb, R. C., & Gustafson, H. L. (1977). Nature and Inheritance of Resistance to Gymnosporangium juniperi – virginianae in Apple Cultivars. Phytopathology, 67, 259–266.

    Article  Google Scholar 

  • RL Bell A Itai 2011 Pyrus C Kole Eds Wild Crop Relatives: Genomic and Breeding Resources, Temperate Fruits Springer-Verlag 147 177

  • Bouvier, L., Bourcy, M., Boulay, M., Tellier, M., Guérif, P., Denancé, C., Durel, C.-E., & Lespinasse, Y. (2011). European pear cultivar resistance to bio-pests: scab (Venturia pirina) and psylla (Cacopsylla pyri). Acta Horticulturae, 909, 459–470. https://doi.org/10.17660/ActaHortic.2011.909.53

    Article  CAS  Google Scholar 

  • Brewer, L. R., & Palmer, J. W. (2011). Global pear breeding programmes: goals, trends and progress for new cultivars and new rootstocks. Acta Horticulturae, 909, 105–119. https://doi.org/10.17660/ActaHortic.2011.909.10

    Article  Google Scholar 

  • Bus, V. G. M., Rikkerink, E. H. A., Caffier, V., Durel, C.-E., & Plummer, K. M. (2011). Revision of the Nomenclature of the Differential Host-Pathogen Interactions of Venturia inaequalis and Malus. Annual Review of Phytopathology, 49, 391–413. https://doi.org/10.1146/annurev-phyto-072910-095339

    Article  CAS  PubMed  Google Scholar 

  • Cao, B., Tian, C. M., & Liang, Y. M. (2016). Gymnosporangium huanglongense sp. nov. from western China. Mycotaxon, 131(2), 375–383. https://doi.org/10.5248/131.375

  • Carbone, I., & Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91(3), 553–556. https://doi.org/10.1080/00275514.1999.12061051

    Article  CAS  Google Scholar 

  • Chapman, P. J., & Catlin, G. A. (1976). Growth stages in fruit trees-from dormant to fruit set. NY Food Life Sci. Bull, 58(10), 658–663.

    Google Scholar 

  • Crowell, I. H. (1940). The geographical distribution of the genus Gymnosporangium. Canadian Journal of Research, 18c(9), 469–488. https://doi.org/10.1139/cjr40c-043

    Article  Google Scholar 

  • Cummins, G. B., & Hiratsuka, Y. (1984). Families of Uredinales. Reports of the Tottori Mycological Institute, 22, 191–208.

    Google Scholar 

  • Cummins, G. B., & Hiratsuka, Y. (2003). Illustrated Genera of Rust Fungi. 3rd ed. American Phytopathological Society.

  • Dervis, S., Dixon, L., Doğanlar, M., & Rossman, A. (2010). Gall production on hawthorns caused by Gymnosporangium spp. in Hatay province. Turkey. Phytoparasitica, 38, 39–400. https://doi.org/10.1007/s12600-010-0102-z

    Article  Google Scholar 

  • Dondini, L., & Sansavini, S. (2012). European pear. In M. L. Badenes & D. H. Byrne (Eds.), Fruit breeding, Handbook of Plant breeding (pp. 369–415). Springer Science & Business Media.

    Google Scholar 

  • Enescu, C. M., Houston, Durrant, T., Caudullo, G., & de Rigo, D. (2016). Juniperus communis in Europe: distribution, habitat, usage and threats. In San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston, Durrant, T., & Mauri, A. (Eds.), European Atlas of Forest Tree Species. (pp. 104). Publication Office of the European Union.

  • Evans, K. (2013). The Potential Impacts of Genetics, Genomics and Breeding on Organic Fruit Production. Acta Horticulturae, 1001, 155–160. https://doi.org/10.17660/ActaHortic.2013.1001.16

    Article  Google Scholar 

  • FAO. (2020). FAOSTAT. Food and Agriculture Organization of the United Nations. Retrieved October 29, 2021, from: http://www.fao.org/faostat/en/#data/QC/visualize

  • Farr, D. F., & Rossman, A. Y. (2019). Fungal databases, U.S. National Fungus Collections, ARS, USDA. Retrieved February, 2019, from https://nt.ars-grin.gov/fungaldatabases/

  • Fernández, J., Llorens, I., & Alvarado, P. (2016). Evidence for Gymnosporangium atlanticum in Europe. Mycotaxon, 131(2), 357–366. https://doi.org/10.5248/131.357

    Article  Google Scholar 

  • Fitzner, S., & Fischer, M. (2005). Bewertung von Pyrus – arten auf Befall mit Birnengitterrost (Gymnosorangium sabinae Dicks.). Erwebs Obstbau, 47, 37–39. https://doi.org/10.1007/s10341-004-0052-z

    Article  Google Scholar 

  • Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Molecular Ecology, 2(2), 113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x

    Article  CAS  PubMed  Google Scholar 

  • Helfer, S. (2005). Overview of the rust fungi (Uredinales) occurring on Rosaceae in Europe. Nova Hedwigia, 81(3–4), 325–370.

    Article  Google Scholar 

  • Hilber, W., & Siegfried, W. (1989). Gitterrost auf Birnbaum und Wacholder-Sanierungsmassnahmnen bei starkem Befall. Schweizer Garten, 8, 23–28.

    Google Scholar 

  • Hiratsuka, Y., & Hiratsuka, N. (1980). Morphology of spermogonia and taxonomy of rust fungi. Reports of the Tottori Mycological Institute, 18, 257–268.

    Google Scholar 

  • Y Hiratsuka S Sato 1982 Morphology and Taxonomy of Rust Fungi KJ Scot AK Chakravory Eds The Rust Fungi Academic Press London New York 1 36

  • Juhasova, G., & Praslieka, J. (2002). Occurrence and harmful effects of Gymnosporangium sabinae (Dicks.) in Slovak Republic. Plant Protection Science, 38(3), 89–93.

    Article  Google Scholar 

  • Kārkliņa, K., Lācis, G., & Lāce, B. (2021). Differences in Leaf Morphological Parameters of Pear (Pyrus communis L.) Based on Their Susceptibility to European Pear Rust Caused by Gymnosporangium sabinae (Dicks.) Oerst. Plants, 10(5), 1024.

  • Kellerhals, M., Szalatnay, D., Hunziker, K., Duffy, B., Nybom, H., Ahmadi-Afzadi, M., ... & Lateur, M. (2012). European pome fruit genetic resources evaluated for disease resistance. Trees, 26(1), 179–189. https://doi.org/10.1007/s00468-011-0660-9

  • Kemp, H., & van Dieren, M. C. A. (2000). Screening of pear cultivars for resistance to fungal diseases (Venturia pirina, Nectria galligena). Acta Horticulturae, 538, 95–101. https://doi.org/10.17660/ActaHortic.2000.538.12

    Article  Google Scholar 

  • Kern, F. D. (1911). A biologic and taxonomic study of the genus Gymnosporangium. Bulletin of the New York Botanical Garden, 7, 391–483.

    Google Scholar 

  • Kern, F. D. (1973). A host survey of Gymnosporangium. Mycopathologia Et Mycologia Applicata, 51(1), 99–101.

    Article  Google Scholar 

  • Kolmer J.A., Ordonez M. E., & Groth J. V. (2009). The Rust Fungi. Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd.

  • Kurtzman, C. P., & Robnett, C. (1997). Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5’end of the large-subunit (26S) ribosomal DNA gene. Journal of Clinical Microbiology, 35(5), 1216–1223. https://doi.org/10.1128/jcm.35.5.1216-1223.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lāce, B., & Bankina, B. (2013). Evaluation of European pear rust severity depending on agro-ecological factors. Research for Rural Development, 1, 6–12.

    Google Scholar 

  • Lāce, B., & Moročko-Bičevska, I. (2013). European pear rust control possibilities based on life cycle of the pathogen. European pear rust control possibilities based on life cycle of the pathogen. In Proceedings of the IOBC/WPRS Working Group “Integrated Protection of Fruit Crops” (Vol. 91, pp. 367–370).

  • Lāce, B., & Lācis, G. (2015). Evaluation of pear (Pyrus communis L.) cultivars in Latvia. Horticultural Science, 42(3), 107–113. https://doi.org/10.17221/39/2014-HORTSCI

  • Lee, S., & K., & Kakishima, M. (1999). Aeciospore surface structures of Gymnosporangium and Roestelia (Uredinales). Mycoscience, 40, 109120.

    Google Scholar 

  • Mendgen, K. (1983). Development and Physiology of Teliospores. The Cereal Rusts (Vol. 1, pp. 375–398). New York & London: Academic Press.

    Google Scholar 

  • Percival, G. C., Noviss, K., & Haynes, I. (2009). Field evaluation of systemic inducing resistance chemicals at different growth stages for the control of apple (Venturia inaequalis) and pear (Venturia pirina) scab. Crop Protection, 28(8), 629–633. https://doi.org/10.1016/j.cropro.2009.03.010

    Article  CAS  Google Scholar 

  • Postman, J. D., Spotts, R. A., & Calabro, J. (2005). Scab Resistance in Pyrus Germplasm. Acta Horticulturae, 671(601), 608. https://doi.org/10.17660/ActaHortic.2005.671.84

    Article  Google Scholar 

  • Prokopova (Lāce), B. (2011). The severity of European pear rust depending on pear cultivars. Sodininkyste Ir Darzininkyste, 30, 43–50.

    Google Scholar 

  • R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Rancane, R., Eihe, M., & Jankovska, L. (2008). Adaption of simulation model RIMPRO for primary apple scab control in Latvia. Acta Horticulturae, 803, 69–76. https://doi.org/10.17660/ActaHortic.2008.803.7

    Article  Google Scholar 

  • Rancane, R., Lace, B., & Lacis, G. (2012). Distribution and development of European pear rust in Latvia and relationship between severity and yield. Integrated Plant Protection in Fruit Crops” Subgroup “Pome Fruit Diseases.” IOBC-WPRS Bulletin, 84, 39–45.

    Google Scholar 

  • Rancāne, R., Vilka, L., & Bankina, B. (2013). Urea application as a sanitation practice to manage pear scab. Research for Rural Development, 1, 13–17.

    Google Scholar 

  • Rehner, S. (2001). Primers for elongation factor 1-a (EF1-a). http://www. aftol. org/pdfs. EF1primer. pdf

  • Roy, B. A. (1994). The use and abuse of pollinators by fungi. Trends in Ecology & Evolution, 9, 335–339.

    Article  CAS  Google Scholar 

  • Sharma, A., Shukla, A., Attri, K., Kumar, M., Kumar, P., Suttee, A., & Singla, N. (2020). Global trends in pesticides: A looming threat and viable alternatives. Ecotoxicology and Environmental Safety, 201, 110812. https://doi.org/10.1016/j.ecoenv.2020.110812

    Article  CAS  PubMed  Google Scholar 

  • Skrivele, M., Kaufmane, E., Strautina, S., Ikase, L., Ruisa, S., Rubauskis, E., ... & Seglia, D. (2008). Overview of fruit and berry growing in Latvia. In Proceedings of International Scientific Conference: Sustainable Fruit Growing: From Plant To Product (p. 514).

  • Swofford, D. L. (2002). Phylogenetic analysis using parsimony (* and other methods). Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts.

  • Tao, S. Q., Cao, B., Kakishima, M., & Liang, Y. M. (2020). Species diversity, taxonomy, and phylogeny of Gymnosporangium in China. Mycologia, 112(5), 941–973.

    Article  PubMed  Google Scholar 

  • Thaxter, R. (1886, May). On certain cultures of Gymnosporangium, with notes on their Roesteliae. In Proceedings of the American Academy of Arts and Sciences (Vol. 22, pp. 259–269). American Academy of Arts & Sciences.

  • Treutter, D. (2012). Pome fruit health. Trees, 26, 1–2.

    Article  Google Scholar 

  • Vilar, L., Caudullo, G., &  de Rigo, D. (2016). Juniperus oxycedrus in Europe: distribution, habitat, usage and threats. In J. San-Miguel-Ayanz, D. de Rigo, G. Caudullo et al. (Eds.), European atlas of forest tree species (p. 105). Publication Office of the European Union.

  • Vilgalys, R., & Hester, M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology, 172(8), 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • TJ White T Bruns SJWT Lee J Taylor 1990 Amplification and dirsect sequencing of fungal ribosomal RNA genes for phylogenetics MA Innis DH Gelfand JJ Sninsky YJ White Eds PCR protocols: A guide to methods and application Academic Press San Diego California 315 322

  • Yun, H. Y., Lee, S. K., & Lee, K. J. (2005). Identification of aecial host ranges of four Korean Gymnosporangium species based on the artificial inoculation with teliospores obtained from various forms of telia. The Plant Pathology Journal, 21(4), 310–316.

    Article  Google Scholar 

  • Yun, H. Y., Hong, S. G., Rossman, A. Y., Lee, S. K., Lee, K. J., & Bae, K. S. (2009). The rust fungus Gymnosporangium in Korea including two new species. G. Monticola and g. Unicorne. Mycologia, 101(6), 790–809. https://doi.org/10.3852/08-221

    Article  Google Scholar 

  • Zhao P, Qi XH, Crous PW, Duan WJ, Cai L. Gymnosporangium species on Malus: Species delineation, diversity and host alternation. Persoonia-Mol Phylogen Evol Fungi. 2020. 45 1 68 100

Download references

Funding

The study was financed by ERDF project No.1.1.1.2/VIAA/2/18/249 “Interaction between host Pyrus communis and pathogen Gymnosporangium sabinae and characterisation of population structure for plant resistance breeding”.

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baiba Lāce.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Supplementary material

Fig. S1

Plant arrangement scheme in inoculation experiment 1 in 2014-2015, where: 1v – pear seedling inoculated with basidiospores of G. clavariiforme; 2v – plants inoculated with G. sabinae; c – control plants. (PNG 296 kb)

High resolution image (TIFF 810 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lāce, B., Drevinska, K., Kārkliņa, K. et al. Gymnosporangium species occurring on Juniperus and Pyrus in Latvia and evidence for Gymnosporangium clavariiforme infecting European pear (Pyrus communis). Eur J Plant Pathol 166, 123–146 (2023). https://doi.org/10.1007/s10658-023-02650-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-023-02650-x

Keywords

Navigation