Skip to main content

Advertisement

Log in

Basal stem rot of oil palm incited by Ganoderma species: A review

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Oil palm infectious diseases have devastating economic implications for the Southeast Asian nations of Indonesia and Malaysia. Therefore, this paper reviews oil palm growth, related diseases, specifically Ganoderma sp. infection, and control methods. The literature was sourced from Scopus using the following keywords: Oil palm, palm oil, Ganoderma boninense, Ganoderma, Elaeis, basal stem rot, Elaies guineensis, fungi, Arecaceae, and microbiology. The majority (73.1%) of infection control methods focused on biological methods such as biological control agents (BCA), metabolites from BCAs, and the development of resistant oil palm varieties. The second most frequent subject included chemical control methods such as fungicides and fertilisers (25.6%), and only one study (1.3%) focused on a mechanical (cultural) control method (pulverisation). Trichoderma spp. were the most frequently studied BCA. Other BCAs included Pseudomonas aeruginosa, endophytes of oil palm, Pycnoporus sanguineus, Streptomyces, Hymenomycetes, Burkholderia cepacian, and Schizophyllum commune. Currently, there is no effective method to combat G. boninense infection. The reviewed biological, chemical, and mechanical control methods are available to the industry, leaving scope for future studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aderungboye, F. O. (1977). Diseases of the oil palm. Pans, 23(3), 305–326.

    Article  Google Scholar 

  • Alexander, A., Abdullah, S., Rossall, S., & Chong, K. P. (2017). Evaluation of the efficacy and mode of action of biological control for suppression of Ganoderma boninense in oil palm. Pakistan Journal of Botany, 49(3), 1193–1199.

    CAS  Google Scholar 

  • Alexander, A., & Phin, C. K. (2014a). Combination of biological agents in suppressing colonization of Ganoderma boninense of basal stem rot. American-Eurasian Journal of Sustainable Agriculture, 8(7 SPEC. ISSUE 2), 1–7.

    Google Scholar 

  • Alexander, A., & Phin, C. K. (2014b). The impact of biological control agents on soil microbial communities in oil palm plantation soils. American-Eurasian Journal of Sustainable Agriculture, 8(7 SPEC. ISSUE 2), 8–14.

    Google Scholar 

  • Alizadeh, F., Abdullah, S. N. A., & Khodavandi, A. (2013). Influence of oil palm-fungi interactions on soil microfungal community and growth profile of plant. Journal of Pure and Applied Microbiology, 7(4), 2577–2590.

    Google Scholar 

  • Angel, L. P. L., Yusof, M. T., Ismail, I. S., Ping, B. T. Y., Mohamed Azni, I. N. A., Kamarudin, N. H., & Sundram, S. (2016). An in vitro study of the antifungal activity of Trichoderma virens 7b and a profile of its non-polar antifungal components released against Ganoderma boninense. Journal of Microbiology, 54(11), 732–744.

    Article  CAS  PubMed  Google Scholar 

  • Ariffin, Z. (1991). Evaluasi Instruksional: Prinsip-Teknik Prosedur. Rosdakarya.

    Google Scholar 

  • Aziz, S. D. A., Jafarah, N. F., Sabri, S., Wahab, M. A. A., & Yusof, Z. N. B. (2019). Antifungal activities against oil palm pathogen Ganoderma boninense from seaweed sources. Asia-Pacific Journal of Molecular Biology and Biotechnology, 27(1), 75–83.

    Article  Google Scholar 

  • Balick, M. J., & Turner, P. D. (1982). Oil palm diseases and disorders. In Brittonia (Vol. 34, issue 3). Oxford Univ. press.

    Google Scholar 

  • Bivi, M. R., Farhana, M. S., Khairulmazmi, A., & Idris, A. (2010). Control of Ganoderma boninense: A causal agent of basal stem rot disease in oil palm with endophyte bacteria in vitro. International Journal of Agriculture and Biology, 12(6), 833–839.

    Google Scholar 

  • Budiani, A., Putranto, R. A., Riyadi, I., Sumaryono, M., & H., & Faizah, R. (2018). Transformation of oil palm calli using CRISPR/Cas9 system: Toward genome editing of oil palm. IOP Conference Series: Earth and Environmental Science, 183(1).

  • Chen, Z. Y., Goh, Y. K., Goh, Y. K., & Goh, K. J. (2017). Life expectancy of oil palm (Elaeis guineensis) infected by Ganoderma boninense in coastal soils, Malaysia: A case study. Archives of Phytopathology and Plant Protection, 50(11–12), 598–612.

    Article  Google Scholar 

  • Cheong, S. L., Cheow, Y. L., & Ting, A. S. Y. (2017). Characterizing antagonistic activities and host compatibility (via simple endophyte-calli test) of endophytes as biocontrol agents of Ganoderma boninense. Biological Control, 105, 86–92. https://doi.org/10.1016/j.biocontrol.2016.12.002

    Article  Google Scholar 

  • Chirinang, P., & Intarapichet, K. O. (2009). Amino acids and antioxidant properties of the oyster mushrooms, Pleurotus ostreatus and Pleurotus sajor-caju. ScienceAsia, 35(4), 326–331.

    Article  CAS  Google Scholar 

  • Chong, K. P., Atong, M., & Rossall, S. (2012). The roles of syringic, caffeic and 4-hydroxybenzoic acids in Ganoderma -oil palm interaction. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 14(2), 157–166.

    CAS  Google Scholar 

  • Chow, Y. Y., Rahman, S., & Ting, A. S. Y. (2017). Understanding colonization and proliferation potential of endophytes and pathogen in planta via plating, polymerase chain reaction and ergosterol assay. Journal of Advanced Research, 8(1), 13–21.

    Article  CAS  PubMed  Google Scholar 

  • Chow, Y. Y., Rahman, S., & Ting, A. S. Y. (2018). Interaction dynamics between endophytic biocontrol agents and pathogen in the host plant studied via quantitative real-time polymerase chain reaction (qPCR) approach. Biological Control, 125(July), 44–49.

    Article  CAS  Google Scholar 

  • Chow, Y. Y., Rahman, S., & Ting, A. S. Y. (2019). Evaluating the host defense responses in oil palm to complex biocontrol endophyte–pathogen–host plant interaction via Fluidigm® real-time polymerase chain reaction (RT-PCR). Biological Control, 129(October), 148–157.

    Article  CAS  Google Scholar 

  • Corley, R. H. V., & Tinker, P. B. H. (2015). The oil palm (5th Editio, p. 680). Wiley-Blackwell.

    Google Scholar 

  • Darmono, T. W. (2000). Ganoderma in oil palm in Indonesia: Current status and prospective use of antibodies for the detection of infection. Ganoderma Diseases of Perennial Crops, 249–266.

  • Elaine Lee, H. C., & Chong, K. P. (2015). Antimicrobial activity of Elaeis guineensis leaf extract against Ganoderma boninense of oil palm basal stem rot. Pakistan Journal of Botany, 47(4), 1593–1597.

    CAS  Google Scholar 

  • Flood, J., Keenan, L., Wayne, S., & Hasan, Y. (2005). Studies on oil palm trunks as sources of infection in the field. Mycopathologia, 159(1), 101–107.

    Article  CAS  PubMed  Google Scholar 

  • GOFB. (2021). Palm oil: A strategic economic sector for Malaysia. Global Oils & Fats Business Online http://gofbonline.com/palm-oil-a-strategic-economic-sector-for-malaysia/

    Google Scholar 

  • Goh, Y. K., Goh, T. K., Marzuki, N. F., Tung, H. J., Goh, Y. K., & Goh, K. J. (2015). Scytalidium parasiticum sp. nov., a new species parasitizing on Ganoderma boninense isolated from oil palm in peninsular Malaysia. Mycobiology, 43(2), 107–117.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goh, Y. K., Marzuki, N. F., Goh, T. K., Tan, S. Y., Goh, Y. K., & Goh, K. J. (2016). Mycoparasitic Scytalidium parasiticum as a potential biocontrol agent against Ganoderma boninense basal stem rot in oil palm*. Biocontrol Science and Technology, 26(10), 1352–1365.

    Article  Google Scholar 

  • Govender, N., & Wong, M. Y. (2017). Detection of oil palm root penetration by agrobacterium-mediated transformed Ganoderma boninense, expressing green fluorescent protein. Phytopathology, 107(4), 483–490.

    Article  CAS  PubMed  Google Scholar 

  • Guni, O. B., & Chong, K. P. (2012). The possible of utilizing environmental friendly and biodegradable chitosan in suppressing Ganoderma infection of oil palm. Ecology, Environment and Conservation, 18(3), 431–436.

    CAS  Google Scholar 

  • Hanin, A. N., Parveez, G. K. A., Rasid, O. A., & Masani, M. Y. A. (2020). Biolistic-mediated oil palm transformation with alfalfa glucanase (AGLU1) and rice chitinase (RCH10) genes for increasing oil palm resistance towards Ganoderma boninense. Industrial Crops and Products, 144(November 2019), 112008.

    Article  CAS  Google Scholar 

  • Ho, C. L., Tan, Y. C., Yeoh, K. A., Ghazali, A. K., Yee, W. Y., & Hoh, C. C. (2016). De novo transcriptome analyses of host-fungal interactions in oil palm (Elaeis guineensis Jacq.). BMC Genomics, 17(1), 0–19, 66.

  • Ho, C. L., Tan, Y. C., Yeoh, K. A., Lee, W. K., Ghazali, A. K., Yee, W. Y., & Hoh, C. C. (2019). Leaf transcriptome of oil palm (Elaeis guineensis Jacq.) infected by Ganoderma boninense. Trees - Structure and Function, 33(3), 943–950.

    Article  CAS  Google Scholar 

  • Hushiarian, R., Yusof, N. A., & Dutse, S. W. (2013). Detection and control of Ganoderma boninense: Strategies and perspectives. SpringerPlus, 2(1), 1–12.

    Article  CAS  Google Scholar 

  • IUCN. (2018). Palm oil and biodiversity. Issues Brief. International Union for Conservation of Nature Issues Brief https://www.iucn.org/sites/dev/files/iucn_issues_brief_palm_oil_and_biodiversity.pdf

    Google Scholar 

  • Jee, W. R., & Chong, K. P. (2015). Antifungal activity of phenolic acids against Ganoderma boninense and possible development of resistance. Advances in Environmental Biology, 9(2), 1–6.

    Google Scholar 

  • Jollands, P. (1983). Laboratory investigations on fungicides and biological agents to control three diseases of rubber and oil palm and their potential applications. Tropical Pest Management, 29(1), 33–38.

    Article  CAS  Google Scholar 

  • Kamu, A., Mun, H. C., Phin, C. K., & Seman, I. A. (2018). Identifying the early visible symptoms of the Ganoderma -infected oil palms: A case study on the infected palms which collapsed within twelve months after disease census. ASM Science Journal, 11(special issue 2), 156–163.

    Google Scholar 

  • Kulaveerasingam, H., Majid, N. A., & Karsani, S. A. (2015). www.electrophoresis-journal.compage \pagenumber electrophoresis. Electrophoresis, 35(15), 1699–1710.

    Google Scholar 

  • Lim, C. K., Marzuki, N. F., Goh, Y. K., Goh, Y. K., Goh, K. J., Ahmad, R., & Azlan Azizan, K. (2018a). Optimization of metabolite extraction protocols for untargeted metabolite profiling of mycoparasitic Scytalidium parasiticum using LC-TOF-MS. Sains Malaysiana, 47(12), 3061–3068.

    Article  CAS  Google Scholar 

  • Lim, F. H., Fakhrana, I. N., Rasid, O. A., Idris, A. S., Ho, C. L., Shaharuddin, N. A., & Parveez, G. K. A. (2017). Molecular cloning and expression analysis of Ganoderma boninense cyclophilins at different growth and infection stages. Physiological and Molecular Plant Pathology, 99, 31–40.

    Article  CAS  Google Scholar 

  • Lim, P. H., Gansau, J. A., & Chong, K. P. (2018b). Streptomyces spp. A potential biocontrol agent against Ganoderma boninense of basal stem rot. Journal of Oil Palm Research, 30(2), 265–275.

    CAS  Google Scholar 

  • Lim, P. H., Gansau, J. A., & Chong, K. P. (2019). Preliminary screening and characterization of fungi isolated from forest soil as biocontrol agent against Ganoderma boninense. Malaysian Journal of Microbiology, 15(2), 103–110.

    CAS  Google Scholar 

  • Mahidin, M. U. (2018). Selected agricultural indicators. Department of Statistics Malaysia.

    Google Scholar 

  • Maluin, F. N., Hussein, M. Z., Azah Yusof, N., Fakurazi, S., Idris, A. S., Zainol Hilmi, N. H., & Jeffery Daim, L. D. (2020a). Chitosan-based agronanofungicides as a sustainable alternative in the basal stem rot disease management. Journal of Agricultural and Food Chemistry, 68(15), 4305–4314.

    Article  CAS  PubMed  Google Scholar 

  • Maluin, F. N., Hussein, M. Z., & Idris, A. S. (2020b). An overview of the oil palm industry: Challenges and some emerging opportunities for nanotechnology development. Agronomy, 10(3).

  • Maluin, F. N., Hussein, M. Z., Yusof, N. A., Fakurazi, S., Abu Seman, I., Zainol Hilmi, N. H., & Jeffery Daim, L. D. (2019a). Enhanced fungicidal efficacy on: Ganoderma boninense by simultaneous co-delivery of hexaconazole and dazomet from their chitosan nanoparticles. RSC Advances, 9(46), 27083–27095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maluin, F. N., Hussein, M. Z., Yusof, N. A., Fakurazi, S., Idris, A. S., Hilmi, N. H. Z., & Daim, L. D. J. (2019b). Preparation of chitosan-hexaconazole nanoparticles as fungicide nanodelivery system for combating Ganoderma disease in oil palm. Molecules, 24(13), 2498–2514.

    Article  CAS  PubMed Central  Google Scholar 

  • Mercière, M., Boulord, R., Carasco-Lacombe, C., Klopp, C., Lee, Y. P., Tan, J. S., Syed Alwee, S. S. R., Zaremski, A., De Franqueville, H., Breton, F., & Camus-Kulandaivelu, L. (2017). About Ganoderma boninense in oil palm plantations of Sumatra and peninsular Malaysia: Ancient population expansion, extensive gene flow and large scale dispersion ability. Fungal Biology, 121(6–7), 529–540.

    Article  PubMed  Google Scholar 

  • Muniroh, M. S., Nusaibah, S. A., Vadamalai, G., & Siddique, Y. (2019). Proficiency of biocontrol agents as plant growth promoters and hydrolytic enzyme producers in Ganoderma boninense infected oil palm seedlings. Current Plant Biology, 20(November 2018), 100116.

    Article  Google Scholar 

  • Musa, H., Nusaibah, S. A., & Khairulmazmi, A. (2018). Assessment on Trichoderma spp. mixture as a potential biocontrol agent of Ganoderma boninense infected oil palm seedlings. Journal of Oil Palm Research, 30(3), 403–415.

    CAS  Google Scholar 

  • Mustafa, I. F., Hussein, M. Z., Saifullah, B., Idris, A. S., Hilmi, N. H. Z., & Fakurazi, S. (2018a). Synthesis of (Hexaconazole-zinc/aluminum-layered double hydroxide nanocomposite) fungicide nanodelivery system for controlling Ganoderma disease in oil palm. Journal of Agricultural and Food Chemistry, 66(4), 806–813.

    Article  CAS  PubMed  Google Scholar 

  • Mustafa, I. F., Hussein, M. Z., Seman, I. A., Hilmi, N. H. Z., & Fakurazi, S. (2018b). Synthesis of Dazomet-zinc/aluminum-layered double hydroxide nanocomposite and its phytotoxicity effect on oil palm seed growth. ACS Sustainable Chemistry and Engineering, 6(12), 16064–16072.

    Article  CAS  Google Scholar 

  • Naher, L., Ho, C. L., Tan, S. G., Yusuf, U. K., & Abdullah, F. (2011). Cloning of transcripts encoding chitinases from Elaeis guineensis Jacq. And their expression profiles in response to fungal infections. Physiological and Molecular Plant Pathology, 76(2), 96–103.

    Article  CAS  Google Scholar 

  • Naher, L., Yusuf, U. K., Tan, S. G., Siddiquee, S., & Islam, M. R. (2014). In vitro and in vivo biocontrol performance of Trichoderma harzianum rifai on Ganoderma boninense pat. Related to pathogenicity on oil palm ( guineensis jacq.). Journal of Pure and Applied Microbiology, 8(2), 973–978.

    Google Scholar 

  • Naidu, Y., Idris, A. S., Madihah, A. Z., & Kamarudin, N. (2016). In vitro antagonistic interactions between endophytic basidiomycetes of oil palm (Elaeis guineensis) and Ganoderma boninense. Journal of Phytopathology, 164(10), 779–790.

    Article  CAS  Google Scholar 

  • Naidu, Y., Siddiqui, Y., Rafii, M. Y., Saud, H. M., & Idris, A. S. (2017). Investigating the effect of white-rot hymenomycetes biodegradation on basal stem rot infected oil palm wood blocks: Biochemical and anatomical characterization. Industrial Crops and Products, 108(August), 872–882.

    Article  CAS  Google Scholar 

  • Nur Azura, A. B., Yusoff, M., Tan, G. Y. A., Jegadeesh, R., Appleton, D. R., & Vikineswary, S. (2016). Streptomyces sanglieri which colonised and enhanced the growth of Elaeis guineensis Jacq. Seedlings was antagonistic to Ganoderma boninense in in vitro studies. Journal of Industrial Microbiology and Biotechnology, 43(4), 485–493.

    Article  CAS  PubMed  Google Scholar 

  • Nur Sabrina, A. A., Sariah, M., & Zaharah, A. R. (2012). Suppression of basal stem rot disease progress in oil palm ( guineensis) after copper and calcium supplementation. Pertanika Journal of Tropical Agricultural Science, 35(SUPPL), 13–24.

    Google Scholar 

  • Nusaibah, S. A., Saad, G., & Hun, T. G. (2017). Antagonistic efficacy of Trichoderma harzianum and Bacillus cereus against Ganoderma disease of oil palm via dip, place and drench (DPD) artificial inoculation technique. International Journal of Agriculture and Biology, 19(2), 299–306. https://doi.org/10.17957/IJAB/15.0280

    Article  Google Scholar 

  • Ommelna, B. G., Jennifer, A. N., & Chong, K. P. (2012). The potential of chitosan in suppressing Ganoderma boninense infection in oil-palm seedlings. Journal of Sustainability Science and Management, 7(2), 186–192.

    CAS  Google Scholar 

  • Ong, C. E., Goh, Y. K., Tan, S. Y., Goh, Y. K., & Goh, K. J. (2018). A preliminary study on the effects of salicylic and jasmonic acids on Ganoderma boninense growth, mycelial hydrophobicity, and media pH under in vitro assays. Archives of Phytopathology and Plant Protection, 51(3–4), 122–127.

    Article  CAS  Google Scholar 

  • Onsando, J. M. (1997). Armillaria root rot of tea: Management and challenges for the future. Tea, 18(2), 166–174.

    Google Scholar 

  • Paterson, R. R. M. (2022). Future scenarios for Fusarium wilt disease and mortality of oil palm in Nigeria, Ghana and Cameroon, extrapolated to Malaysia and Indonesia. European Journal of Plant Pathology, 162(1), 105–117.

  • Paterson, R. R. M. (2006). Fungi and fungal toxins as weapons. Mycological Research, 110(9), 1003–1010.

    Article  CAS  PubMed  Google Scholar 

  • Paudzai, F. A. M., Sundram, S., Yusof, M. T., Angel, L. P. L., Hashim, A. M., & Abdullah, S. N. A. (2019). Induced systemic resistance and promotion of plant growth in oil palm seedlings by endophytic Trichoderma virens. Journal of Oil Palm Research, 31(4), 572–581.

    CAS  Google Scholar 

  • Peltola, J., Ritieni, A., Mikkola, R., Grigoriev, P. A., Pócsfalvi, G., Andersson, M. A., & Salkinoja-Salonen, M. S. (2004). Biological effects of Trichoderma harzianum peptaibols on mammalian cells. Applied and Environmental Microbiology, 70(8), 4996–5004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilotti, C. A., Gorea, E. A., & Bonneau, L. (2018). Basidiospores as sources of inoculum in the spread of Ganoderma boninense in oil palm plantations in Papua New Guinea. Plant Pathology, 67(9), 1841–1849.

    Article  Google Scholar 

  • Pilotti, C. A., Sanderson, F. R., Aitken, E. A. B., & Armstrong, W. (2004). Morphological variation and host range of two Ganoderma species from Papua New Guinea. Mycopathologia, 158(2), 251–265.

    Article  PubMed  Google Scholar 

  • Pithakkit, S., Petcharat, V., Chuenchit, S., Pornsuriya, C., & Sunpapao, A. (2015). Isolation of antagonistic actinomycetes species from rhizosphere as effective biocontrol against oil palm fungal diseases. Walailak Journal of Science and Technology, 12(5), 481–490.

    Google Scholar 

  • Plata-Rueda, A., Martínez, L. C., Fernandes, F. L., De Sousa Ramalho, F., Zanuncio, J. C., & Serrão, J. E. (2016). Interactions between the bud rot disease of oil palm and rhynchophorus palmarum (Coleoptera: Curculionidae). Journal of Economic Entomology, 109(2), 962–965. https://doi.org/10.1093/jee/tov343

    Article  PubMed  Google Scholar 

  • Pornsuriya, C., Sunpapao, A., Srihanant, N., Worapattam, K., Kittimorak, J., Phithakkit, S., & Petcharat, V. (2013). A survey of diseases and disorders in oil palms of southern Thailand. Plant Pathology Journal, 12(4), 169–175.

    Article  CAS  Google Scholar 

  • Puspita, F., Hadiwiyono, P. S. H., & Roslim, D. I. (2020). Induced resistance by Bacillus subtilis on oil palm seedling infected by Ganoderma boninense. Biodiversitas, 21(1), 28–33.

    Google Scholar 

  • Rahman, K. A., & Othman, R. (2020). Influence of pH levels on disease development in oil palm seedling roots infected with Ganoderma boninense. Rhizosphere, 13(October 2019), 100181.

    Article  Google Scholar 

  • Rakib, M. R. M., Bong, C. F. J., Khairulmazmi, A., Idris, A. S., Jalloh, M. B., & Wahida, N. H. (2017a). Ganoderma species of basal and upper stem rots in oil palm (Elaeis) in Sarawak, Malaysia. Journal of Academia UiTM Negeri Sembilan, 5(1), 27–35.

    Google Scholar 

  • Rakib, M. R. M., Clament, C. F. S., Dayang Syazanie, A. E., & Darwana, D. (2020). Investigation on Ganoderma infection in oil palm based on the cultural characteristics and somatic compatibility: A case study in Sandakan, Sabah. ASM Science Journal, 13(Specialissue6), 23–29.

    Google Scholar 

  • Rakib, M. R. M., Bong, C. F. J., Khairulmazmi, A., & Idris, A. S. (2014a). Genetic and morphological diversity of Ganoderma species isolated from infected oil palms (Elaeis guineensis). International Journal of Agriculture and Biology, 16(4), 691–699.

    Google Scholar 

  • Rakib, M. R. M., Bong, C. F. J., Khairulmazmi, A., & Idris, A. S. (2014b). Occurrence and spatial distribution of Ganoderma species causing upper and basal stem rot in oil palm. Journal of Food, Agriculture and Environment, 12(2), 360–364.

    Google Scholar 

  • Rakib, M. R. M., Bong, C. F. J., Khairulmazmi, A., Idris, A. S., Jalloh, M. B., & Ahmed, O. H. (2017b). Association of Copper and Zinc Levels in oil palm (Elaeis guineensis) to the spatial distribution of Ganoderma species in the plantations on peat. Journal of Phytopathology, 165(4), 276–282.

    Article  CAS  Google Scholar 

  • Rebitanim, N. A., Hanafi, M. M., Idris, A. S., Abdullah, S. N. A., Mohidin, H., & Rebitanim, N. Z. (2020). GanoCare® improves oil palm growth and resistance against Ganoderma basal stem rot disease in nursery and field trials. BioMed Research international 3063710. https://doi.org/10.1155/2020/3063710

  • Rees, R. W., Flood, J., Hasan, Y., & Cooper, R. M. (2007). Effects of inoculum potential, shading and soil temperature on root infection of oil palm seedlings by the basal stem rot pathogen Ganoderma boninense. Plant Pathology, 56(5), 862–870.

    Article  Google Scholar 

  • Rees, R. W., Flood, J., Hasan, Y., Wills, M. A., & Cooper, R. M. (2012). Ganoderma boninense basidiospores in oil palm plantations: Evaluation of their possible role in stem rots of Elaeis guineensis. Plant Pathology, 61(3), 567–578.

    Article  Google Scholar 

  • Rosli, R., Amiruddin, N., Ab Halim, M. A., Chan, P. L., Chan, K. L., Azizi, N., Morris, P. E., Low, E. T. L., Ong-Abdullah, M., Sambanthamurthi, R., Singh, R., & Murphy, D. J. (2018). Comparative genomic and transcriptomic analysis of selected fatty acid biosynthesis genes and CNL disease resistance genes in oil palm. PLoS One, 13(4), 1–17.

    Article  CAS  Google Scholar 

  • Said, N., Omar, D., Nasehi, A., & Wong, M. Y. (2019). Pyraclostrobin suppressed Ganoderma basal stem rot (BSR), promoted plant growth and induced early expression of β-1,3-glucanase in oil palm (E. guineensis). Journal of Oil Palm Research, 31(2), 248–261.

    CAS  Google Scholar 

  • Sarria, G., Garcia, A., Mestizo, Y., Medina, C., Varón, F., Mesa, E., & Hernandez, S. (2021). Antagonistic interactions between Trichoderma spp. and Phytophthora palmivora (Butler) from oil palm in Colombia. European Journal of Plant Pathology, 161(4), 751–768.

    Article  CAS  Google Scholar 

  • Seung, C. C. F., Chyng, A. W., & Hoe, N. W. (2015). Isolation of rhizospheric and endophytic soil bacteria SPLUMS-1 and SPLUMS-2 of oil palm against Ganoderma sp. JN234427. Malaysian Journal of Microbiology, 11(special issue 2), 116–120.

    CAS  Google Scholar 

  • Shariffah-Muzaimah, S. A., Idris, A. S., Madihah, A. Z., Dzolkhifli, O., Kamaruzzaman, S., & Maizatul-Suriza, M. (2018). Characterization of Streptomyces spp. isolated from the rhizosphere of oil palm and evaluation of their ability to suppress basal stem rot disease in oil palm seedlings when applied as powder formulations in a glasshouse trial. World Journal of Microbiology and Biotechnology, 34(1), 1–14.

  • Sharip, N. S., Ariffin, H., Hassan, M. A., Nishida, H., & Shirai, Y. (2016). Characterization and application of bioactive compounds in oil palm mesocarp fiber superheated steam condensate as an antifungal agent. RSC Advances, 6(88), 84672–84683.

    Article  CAS  Google Scholar 

  • Sim, C. S. F., Cheow, Y. L., Ng, S. L., & Ting, A. S. Y. (2019). Biocontrol activities of metal-tolerant endophytes against Ganoderma boninense in oil palm seedlings cultivated under metal stress. Biological Control, 132(January), 66–71.

    Article  CAS  Google Scholar 

  • Singh, R., Ong-Abdullah, M., Low, E. T. L., Manaf, M. A. A., Rosli, R., Nookiah, R., Ooi, L. C. L., Ooi, S. E., Chan, K. L., Halim, M. A., Azizi, N., Nagappan, J., Bacher, B., Lakey, N., Smith, S. W., He, D., Hogan, M., Budiman, M. A., Lee, E. K., … Sambanthamurthi, R. (2013). Oil palm genome sequence reveals divergence of interfertile species in old and new worlds. Nature, 500(7462), 335–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soh, A. C., Wong, G., Hor, T. Y., Tan, C. C., & Chew, P. S. (2010). Oil palm genetic improvement. Plant Breeding Reviews, 22, 165–219.

    Article  Google Scholar 

  • Sujarit, K., Mori, M., Dobashi, K., Shiomi, K., Pathom-Aree, W., & Lumyong, S. (2020). New antimicrobial phenyl alkenoic acids isolated from an oil palm rhizosphere-associated actinomycete, Streptomyces palmae CMU-AB204T. Microorganisms, 8(3), 1–15.

    Article  CAS  Google Scholar 

  • Sundram, S. (2013). The effects of Trichoderma in surface mulches supplemented with conidial drenches in the disease development of Ganoderma basal stem rot in oil palm. Journal of Oil Palm Research, 25(DEC), 314–325.

    Google Scholar 

  • Sundram, S., Meon, S., Seman, I. A., & Othman, R. (2011). Symbiotic interaction of endophytic bacteria with arbuscular mycorrhizal fungi and its antagonistic effect on Ganoderma boninense. Journal of Microbiology, 49(4), 551–557.

    Article  PubMed  Google Scholar 

  • Sundram, S., & Intan-Nur, A. A. (2017). South American Bud rot: A biosecurity threat to South East Asian oil palm. Crop Protection, 101, 58–67.

  • Supriyanto, P., Poromarto, S. H., & Supyani. (2020). Evaluation of in vitro antagonistic activity of fungi from peatlands against Ganoderma species under acidic condition. Biodiversitas, 21(7), 2935–2945.

    Article  Google Scholar 

  • Surendran, A., Siddiqui, Y., Ali, N. S., & Manickam, S. (2018a). Inhibition and kinetic studies of cellulose- and hemicellulose-degrading enzymes of Ganoderma boninense by naturally occurring phenolic compounds. Journal of Applied Microbiology, 124(6), 1544–1555.

    Article  CAS  PubMed  Google Scholar 

  • Surendran, A., Siddiqui, Y., Saud, H. M., Ali, N. S., & Manickam, S. (2018b). Inhibition and kinetic studies of lignin degrading enzymes of Ganoderma boninense by naturally occurring phenolic compounds. Journal of Applied Microbiology, 125(3), 876–887.

    Article  CAS  PubMed  Google Scholar 

  • Tajudin, N. S., Hanafi, M. M., Idris, A. S., & Balasundram, S. K. (2016). Determination and mapping of calcium and magnesium contents using geostatistical techniques in oil palm plantation related to basal stem rot disease. Songklanakarin Journal of Science and Technology, 38(1), 23–30.

    CAS  Google Scholar 

  • Tan, C. J., How, K. C., Loh-Mia, P. P., Ismet, A., Getha, K., Seki, T., & Vikineswary, S. (2002). Bioactivity of selected actinomycetes against Ganoderma boninense. Asia-Pacific Journal of Molecular Biology and Biotechnology, 10(2), 119–125.

    CAS  Google Scholar 

  • Teh, C. Y., Pang, C. L., Tor, X. Y., Ho, P. Y., Lim, Y. Y., Namasivayam, P., & Ho, C. L. (2019). Molecular cloning and functional analysis of a necrosis and ethylene inducing protein (NEP) from Ganoderma boninense. Physiological and Molecular Plant Pathology, 106, 42–48.

    Article  CAS  Google Scholar 

  • Tengoua, F. F., Hanafi, M. M., Idris, A. S., Sahebi, M., & Syed-Omar, S. R. (2015). Comparative study of lignin in roots of different oil palm progenies in relation to Ganoderma basal stem rot disease. Journal of Oil Palm Research, 27(2), 128–134.

    Google Scholar 

  • Utomo, C., Tanjung, Z. A., Aditama, R., Buana, R. F. N., Pratomo, A. D. M., Tryono, R., & Liwang, T. (2018). Draft genome sequence of the phytopathogenic fungus Ganoderma boninense, the causal agent of basal stem rot disease on oil palm. Genome Announcements, 6(17), 1–2.

    Article  Google Scholar 

  • Voo, C. L. Y., Yeo, D. E. T., Chong, K.-P., & Rodrigues, K. F. (2020). Draft genome sequence of a phytopathogenic Ganoderma sp. strain that causes basal stem rot disease on oil palm in Sabah, Malaysia. Microbiology resource announcements, 9(1). https://doi.org/10.1128/MRA.01240-19

  • Widdowson, F. V., Penny, A., & Williams, R. J. B. (1966). An experiment measuring effects of N, P and K fertilizers on yield and N, P and K contents of grazed grass. The Journal of Agricultural Science, 67(1), 121–128.

    Article  CAS  Google Scholar 

  • Wong, L. C., Bong, C. F. J., & Idris, A. S. (2012). Ganoderma species associated with basal stem rot disease of oil palm. American Journal of Applied Sciences, 9(6), 879–885.

    Article  Google Scholar 

  • Woodward, S. (1998). Heterobasidion annosum: Biology, ecology, impact, and control. CABI.

    Google Scholar 

  • Wunderlich, S., & Gatto, K. A. (2015). Consumer perception of genetically modified organisms and sources of information. Advances in nutrition, 6(6), 842–851.

  • Zhou, L. W., Cao, Y., Wu, S. H., Vlasák, J., Li, D. W., Li, M. J., & Dai, Y. C. (2015). Global diversity of the Ganoderma lucidum complex (Ganoderma taceae, Polyporales) inferred from morphology and multilocus phylogeny. Phytochemistry, 114, 7–15.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Ministry of Higher Education Malaysia for providing a research grant under RU-Grant Faculty Program- Universiti Malaya (GPF084A: GPF084B – 2020) to Dr. Wan-Mohtar and Dr. Rejab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Abd Al Qadr Imad Wan-Mohtar.

Ethics declarations

Conflict of interests

The Author(s) declares(s) that there is no conflict of interest in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Supramani, S., Rejab, N.A., Ilham, Z. et al. Basal stem rot of oil palm incited by Ganoderma species: A review. Eur J Plant Pathol 164, 1–20 (2022). https://doi.org/10.1007/s10658-022-02546-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-022-02546-2

Keywords

Navigation