Skip to main content
Log in

Standard area diagram set for assessment of severity and temporal progress of apple blotch

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Apple blotch (Marssonina coronaria) is a foliar disease of increasing importance globally. Methods to quantify the disease and knowledge about epidemiology are required for new studies on the disease. The objectives of this study were to develop a standard area diagram set (SADs) to assess apple blotch severity and to describe the temporal progress of the disease under field conditions on older and younger leaves of two apple cultivars. For the development of SADs, symptomatic leaves were collected and scanned to obtain the actual severity. Based on the pattern of the disease, a SADs was elaborated and validated. Leaf severities were estimated without and with SADs by 12 raters to validate the tool. After validation, the SADs was used to assess apple blotch in older and younger leaves of selected shoots during the vegetative cycle of cvs. Eva and Gala. SADs severities ranged from 0.2 to 96%. Accuracy, precision, and reliability of the estimates were significantly improved when the SADs was used. In the field, the onset of apple blotch was in late spring and greater increases in severity occurred during summer. Rates of disease progress ranged from 0.09 to 0.13. Epidemics were different in older and younger leaves at the end of the apple vegetative cycle for both cultivars tested. Our work provided a tool for apple blotch quantification and described the disease progress curve under subtropical conditions, which can contribute as basis for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alves, G., May De Mio, L. L., Zanette, F., & Oliveira, M. C. (2008). Ferrugem do pessegueiro e seu efeito na desfolha e na concentração de carboidratos em ramos e gemas. Tropical Plant Pathology, 33(5), 370–376. https://doi.org/10.1590/S1982-56762008000500005.

    Article  Google Scholar 

  • CABI/EPPO. (2014). Diplocarpon mali. [Distribution map]. Distribution Maps of Plant Diseases. Online publication available at https://www.cabi.org/isc/datasheet/109745. Accessed 20 January 2020.

  • Carvalho, M. S., Andreozzi, V. L., Codeço, C. T., Campos, D. P., Barbosa, M. T. S., & Shimakura, S. E. (2011). Análise de Sobrevivência: teoria e aplicações em saúde 2nd ed. Rio de Janeiro: Editora FIOCRUZ.

    Book  Google Scholar 

  • Cothren, J. T., Gwathmey, C. O., & Ames, R. B. (2001). Physiology of cotton defoliation and desiccation. In J. R. Supak & C. E. Snipes (Eds.), Cotton harvest management: Use and influence of harvest. Cotton Foundation: Memphis.

    Google Scholar 

  • Dolinski, M. A., Duarte, H. S. S., Silva, J. B., & May De Mio, L. L. (2017). Development and validation of a standard area diagram set for assessment of peach rust. European Journal of Plant Pathology, 148(4), 817–824. https://doi.org/10.1007/s10658-016-1138-9.

    Article  Google Scholar 

  • Gamer M. et al. (2019). irr: Various coefficients of interrater reliability and agreement. Available at: < https://cran.r-project.org/web/packages/irr/irr.pdf>. Accessed: 30 March 2020.

  • Garner, L. C., & Lovatt, C. J. (2016). Physiological factors affecting flower and fruit abscission of ‘Hass’ avocado. Scientia Horticulturae, 199(16), 32–40. https://doi.org/10.1016/j.scienta.2015.12.009.

    Article  CAS  Google Scholar 

  • Hamada, N. A., Moreira, R. R., Nesi, C. N., & May De Mio, L. L. (2019). Pathogen dispersal and Glomerella leaf spot progress within apple canopy in Brazil. Plant Disease, 103, 3209–3217. https://doi.org/10.1094/PDIS-08-18-1375-RE.

    Article  CAS  PubMed  Google Scholar 

  • Harada, Y., Sawamura, K., & Konno, K. (1974). Diplocarpon mali sp.nov., the perfect state of apple blotch fungus Marssonina coronaria. Annals of the Phytopathologicial Society of Japan, 40, 412–418.

    Article  Google Scholar 

  • Hauagge, R., & Tsuneta, M. (1999). ‘IAPAR 75-Eva’, IAPAR 76 - ANABELA’ e ‘IAPAR 77 – CARÍCIA’ – Novas cultivares com baixa necessidade em frio. Revista Brasileira de Fruticultura, 21(3), 239–242.

    Google Scholar 

  • Holb, I. J. (2003). Analyses of temporal dynamics of brown rot development on fruit in organic apple production. International Journal of Horticultural Science, 9(3-4), 97–100. https://doi.org/10.31421/IJHS/9/3-4/414.

    Article  Google Scholar 

  • Holb, I. J., & Scherm, H. (2007). Temporal dynamics of Brown rot in different Apple Management systems and importance of dropped fruit for disease development. Phytopathology, 97(9), 1104–1111. https://doi.org/10.1094/PHYTO-97-9-1104.

    Article  CAS  PubMed  Google Scholar 

  • Hood, I. A., Chapman, S. J., Gardner, J. F., & Molony, K. (2002). Seasonal development of Septoria leaf blight in young Eucalyptus nitens plantations in New Zealand. Australian Forestry, 65(3), 153–164. https://doi.org/10.1094/PHYTO-97-9-1104.

    Article  Google Scholar 

  • Jiang Zide, Q. I., Peikun, L. I., & Xiaofan. (2011). Effects of climate factors on the epidemic of apple Marssonina blotch in Shaanxi Province and related prediction models. Chinese Journal of Applied Ecology, 22, 268–272.

    Google Scholar 

  • Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53, 457–481.

    Article  Google Scholar 

  • Kennedy, R. A., & Johnson, D. (1981). Changes in photosynthetic characteristics during leaf development in apple. Photosynthesis Research, 2, 213–223. https://doi.org/10.1007/BF00032360.

    Article  CAS  PubMed  Google Scholar 

  • Kranz, J., & Rottem, J. (1987). Experimental techniques in plant disease epidemiology. Springer Verlag.

  • Kretzschmar, A. A., Marodin, G. A. B., & Duarte, V. (2005). Ocorrência e intensidade de Marssonina mali em macieira cv. Eva nas condições da depressão central do Rio Grande do Sul. Revista de Ciências Agroveterinária, 4(2), 145–147.

    Google Scholar 

  • Kumar, A., & Sharma, J. N. (2014). Host plant cultivar, leaf positions and nutrition affect the expression of Marssonina blotch resistance in apple. Plant Disease Research, 29(1), 1–5.

    Google Scholar 

  • Kwon, D., Kim, S., Kim, Y., Son, M., Kim, K., An, D., & Kim, B. H. (2015). An empirical assessment of the economic damage caused by apple Marssonina blotch and pear scab outbreaks in Korea. Sustainability, 7(12), 16588–16598. https://doi.org/10.3390/su71215836.

    Article  Google Scholar 

  • Lee, D. H., Back, C. G., Win, N. K. K., Choi, K. H., Kim, K. M., Kang, I. K. L., Choi, C., Yoon, T. M., Uhm, J. Y., & Jun, H. Y. (2011). Biological characterization of Marssonina coronaria associated with apple blotch disease. Mycobiology, 39(3), 200–205. https://doi.org/10.5941/MYCO.2011.39.3.200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, M., Ma, F., Guo, C., & Liu, J. (2010). Ascorbic acid formation and profiling of genes expressed in its synthesis and recycling in apple leaves of different ages. Plant Physiology and Biochemistry, 48(4), 2016–2024. https://doi.org/10.1016/j.plaphy.2010.01.015.

    Article  CAS  Google Scholar 

  • Li, Y., Hirst, P. M., Wan, Y., & Liu, Y. (2012). Resistance to Marssonina coronaria and Alternaria alternata apple pathotype in the major apple cultivars and rootstocks used in China. Horticultural Science, 47(9), 1241–1244. https://doi.org/10.21273/HORTSCI.47.9.1241.

    Article  Google Scholar 

  • Lian, S., Dong, X., Li, P., Wang, C., Zhou, S., & Li, B. (2020). Effects of temperature and moisture on conidia germination, infection and Acervulus formation of apple Marssonina leaf blotch pathogen (Diplocarpon mali) in China. Plant Disease, PDIS-06-20-1180. https://doi.org/10.1094/PDIS-06-20-1180-RE.

  • May De Mio, L. L., & Ruaro, L. (2008). Métodos de avaliação da ferrugem do álamo e eficiência de fungicidas no seu controle. Revista Árvore, 32(5), 837–844. https://doi.org/10.1590/S0100-67622008000500008.

    Article  Google Scholar 

  • Michereff, S. J., Noronha, M. A., Lima, G. S. A., Albert, I. C. L., Melo, E. A., & Gusmão, L. O. (2009). Diagrammatic scale to assess downy mildew severity in melon. Horticultura Brasileira, 27(1), 76–79. https://doi.org/10.1590/S0102-05362009000100015.

    Article  Google Scholar 

  • Moreira, R. R., Duarte, H. S. S., & May De Mio, L. L. (2019). Improving accuracy, precision and reliability of severity estimates of Glomerella leaf spot on apple leaves using a new standard area diagram set. European Journal of Plant Pathology, 153, 975–982. https://doi.org/10.1007/s10658-018-01610-0.

    Article  Google Scholar 

  • Moreira, R. R., Zielinski, E. C., Castellar, C., Filho, A. B., & May De Mio, L. L. (2020). Study of infection process of five species of Colletotrichum comparing symptoms of glomerella leaf spot and bitter rot in two apple cultivars. European Journal of Plant Pathology, 159, 37–53. https://doi.org/10.1007/s10658-020-02138-y.

  • Nesi, C. N., Alves, G., Junior, P. J. R., & May De Mio, L. L. (2014). Heterogeneity of peach rust disease progress within the tree canopy. European Journal of Plant Pathology, 139(4), 663–677. https://doi.org/10.1007/s10658-014-0421-x.

    Article  Google Scholar 

  • Nesi, C. N., Bonat, W. H., Zeviani, W. M., Ribeiro Júnior, P. J., & May De Mio, L. L. (2011) Inferências do modelo logístico sob diferentes parametrizações. In: Anais da 56° Reunião Anual da Região Brasileira internacional de Biometria, UEM.

  • Nogueira Júnior, A. F., Ribeiro, R. V., Marcos, F. C. C., & Amorim, L. (2019). Virtual lesions and photosynthetic damage caused by Plasmopara viticola in Vitis labrusca. European Journal of Plant Pathology, 155, 545–555. https://doi.org/10.1007/s10658-019-01791-2.

    Article  CAS  Google Scholar 

  • Nunes, C. C., & Alves, S. A. M. (2012). Elaboração e validação de escala diagramática para quantificação da severidade de entomosporiose em folhas de pereira. Summa Phytopathologica, 38(3), 239–244. https://doi.org/10.1590/S0100-54052012000300011.

    Article  Google Scholar 

  • Nutter, F. W., & Schultz, P. M. (1995). Improving the accuracy and precision of disease assessments: Selection of methods and use of computer-aided training programs. Canadian Journal of Plant Pathology, 17(2), 174–184. https://doi.org/10.1080/07060669509500709.

    Article  Google Scholar 

  • Nutter, W., & Esker, D. (2006). The role of psychophysics in phytopathology: The weber–Fechner law revisited. European Journal of Plant Pathology, 114(2), 199–213. https://doi.org/10.1007/s10658-005-4732-9.

    Article  Google Scholar 

  • Ojiambo, P. S., & Scherm, H. (2005a). Temporal Progress of Septoria leaf spot on Rabbiteye blueberry (Vaccinium ashei). Plant Disease, 89(10), 1090–1096. https://doi.org/10.1094/PD-89-1090.

    Article  CAS  PubMed  Google Scholar 

  • Ojiambo, P. S., & Scherm, H. (2005b). Survival analyses of time to abscission of blueberry leaves affected by Septoria leaf spot. Phytopathology, 95, 108–113. https://doi.org/10.1094/PHYTO-95-0108.

    Article  CAS  PubMed  Google Scholar 

  • Ojiambo, P. S., Scherm, H., & Brannen, P. M. (2006). Septoria leaf spot reduces flower bud set and yield potential of Rabbiteye and southern Highbush blueberries. Plant Disease, 90(1), 51–57. https://doi.org/10.1094/PD-90-0051.

    Article  CAS  PubMed  Google Scholar 

  • Patharkar, O. R., & Walker, J. C. (2018). Advances in abscission signaling. Journal of Experimental Botany, 69(4), 733–740. https://doi.org/10.1093/jxb/erx256.

    Article  CAS  PubMed  Google Scholar 

  • Petri, J. L., Leite, G. B., Couto, M., & Francescatto, E. P. (2011). Advances of the apple crop in Brazil. Revista Brasileira de Fruticultura, 33(1), 48–56. https://doi.org/10.1590/S0100-29452011000500007.

    Article  Google Scholar 

  • R Core Team. The R project for statistical computing (2020). Available at: <https://www.r-project.org/>. Accessed: Mar. 30, 2020.

  • Shaner, G., & Finney, E. (1977). The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology, 68, 471–475.

    Article  Google Scholar 

  • Sharma, J. N. (1999). Marssonina blotch - a new disease causing premature leaf fall in apple. Indian Phytopathology, 52(1), 101–102.

    Google Scholar 

  • Sharma, J. N., & Gautam, D. R. (1997). Studies on premature leaf fall in apple - a new problem. Indian Journal of Plant Protection, 25(1), 8–12.

    Google Scholar 

  • Sharma, J. N., Sharma, A., & Sharma, P. (2004). Out-break of Marssonina blotch in warmer climates causing premature leaf fall problem of apple and its management. Acta Horticulturae, 662, 405–409. https://doi.org/10.17660/ActaHortic.2004.662.61.

    Article  CAS  Google Scholar 

  • Sharma, N. V. S., Thakur, J., Mohan, S. M., Khurana, P., & Sharma, A. (2009). Epidemiology of Marssonina blotch (Marssonina coronaria) of apple in India. Indian Phytopathology, 62(3), 348–359.

    Google Scholar 

  • Sharma, N. V. S., Thakur, J., Sharma, S., Mohan, S. M., & Khurana, P. (2011). Development of Marssonina blotch (Marssonina coronaria) in different genotypes of apple. Indian Phytopathology, 64(4), 358–362.

    Google Scholar 

  • Soto-Estrada, A., & Adaskaveg, J. E. (2004). Temporal and quantitative analyses of stem lesion development and foliar disease progression of peach rust in California. Phytopathology, 94(1), 52–60. https://doi.org/10.1094/PHYTO.2004.94.1.52.

    Article  PubMed  Google Scholar 

  • Sterling, A., Gómez-Torres, A. K., Suárez-Córdoba, Y. D., Molina, L. C. S., & Sierra-Hayer, J. F. (2020). Standard area diagrams to assess black crust (Phyllachora huberi) severity on rubber tree leaflets. European Journal of Plant Pathology, 156, 827–837. https://doi.org/10.1007/s10658-020-01933-x.

    Article  Google Scholar 

  • Stevenson, M. et al. (2020). EpiR: Tools for the analysis of epidemiological data. Available at: < https://cran.r-project.org/web/packages/epiR/epiR.pdf>. Accessed: Mar. 30, 2020.

  • Sutton, T. B., Aldwinckle, H. S., Agnello, A. M., & Walgenbach, J. F. (2014). Compendium of apple and pear diseases and pests. Second ed., The American Phytopathological Society.

  • Therneau, T. (2020). A package for survival analysis in R. R package version 3.1-12. Available at: <https://CRAN.R-project.org/package=survival>. Accessed: May 15, 2020.

  • Valdebenito-Sanhueza, R. M., Meyer, G. A., & Bartnicki, V. A. (2014). Determinação do início da proteção das macieiras 'Fuji' para racionalização do controle químico de Diplocarpon mali. Summa Phytopathologica, 40(2), 182–184. https://doi.org/10.1590/0100-5405/1980.

    Article  Google Scholar 

  • Vale, F. X. R., Fernandes Filho, E. I., & Liberato, J. R. (2003). QUANT: A software for plant disease severity assessment. In M. Braithwaite & I. Havery (Eds.), Proceedings of the 8th international congress of plant pathology New Zealand.

    Google Scholar 

  • Vidal, G. S., Souza, B. L., May De Mio, L. L., & Duarte, H. S. S. (2019). Development and validation of a standard area diagram set for assessment of plum rust severity. Australasian Plant Pathology, 48, 603–606. https://doi.org/10.1007/s13313-019-00662-y.

    Article  Google Scholar 

  • Waggoner, P. E., & Berger, R. D. (1987). Defoliation, disease and growth. Phytopathology, 77, 393–398.

    Google Scholar 

  • Wang, J., Zhao, H., Su, S., Gao, X., & Huang, L. (2012). Effect of different Malus species on growth and development of Diplocarpon mali. Acta Agriculturae Boreali-occidentalis Sinica, 21, 60–64 (In Chinese).

    Google Scholar 

  • Wöhner, T., & Emeriewen, O. F. (2019). Apple blotch disease (Marssonina coronaria (Ellis & Davis) Davis) – Review and research prospects. European Journal of Plant Pathology, 153, 657–669. https://doi.org/10.1007/s10658-018-1590-9.

    Article  Google Scholar 

  • Xu, J., Li, M., Jiao, P., Tao, H., Wei, N., Ma, F., & Zhang, J. (2015). Dynamic transcription profiles of “Qinguan” apple (Malus×domestica) leaves in response to Marssonina coronaria inoculation. Frontiers in Plant Science, 6, 842. https://doi.org/10.3389/fpls.2015.00842.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi-Cun, H. (1986). Overwintering characteristics of Marssonina coronaria (Ell. Et da Vis). Journal of Southwest Forestry College, 01.

  • Zhao, H., Han, Q., Wang, J., Gao, X., Xiao, C. L., Liu, J., & Huang, L. (2013). Cytology of infection of apple leaves by Diplocarpon mali. European Journal of Plant Pathology, 136, 41–49. https://doi.org/10.1007/s10658-012-0129-8.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the ‘Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil’ (CAPES) – Finance Code 001. The fourth and fifth authors thanks the ‘Conselho Nacional de Desenvolvimento Científico e Tecnológico’ (CNPq)/Brazil for the research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise Larissa May De Mio.

Ethics declarations

All authors declare that this material has not been published in whole or in part elsewhere; the manuscript is not currently being considered for publication in another journal; all authors have been personally and actively involved in substantive work leading to the manuscript, and will hold themselves jointly and individually responsible for its content.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

ESM 1

(PDF 149 kb)

ESM 2

(PDF 364 kb)

ESM 3

(PDF 98 kb)

ESM 4

(PDF 263 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castellar, C., Jauch, F., Moreira, R.R. et al. Standard area diagram set for assessment of severity and temporal progress of apple blotch. Eur J Plant Pathol 160, 599–609 (2021). https://doi.org/10.1007/s10658-021-02268-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-021-02268-x

Keywords

Navigation