Skip to main content
Log in

Effects of seed treatment with mustard meal in control of Fusarium culmorum Sacc. and the growth of common wheat (Triticum aestivum ssp. vulgare)

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

This study investigated the bio-control activity of organic mustard meal as a seed dressing against Fusarium culmorum Sacc., the methods of its application on seed germination and germination capacity, and the parameters of plant development of wheat under in vitro, greenhouse and field conditions. White mustard meal applied as a wet dressing at a dose of 15 and 30 g per kg of seed, as well as dry dressing at a dose of 15, 30, and 50 g per kg of seed, did not negatively influence seed germination and plant development. However, the dry method of dressing was significantly less effective against Fusarium blight (in the greenhouse between 38 and 44% of infected plants were from dry dressing seed, 14–22% from wet dressing and 65% from untreated plants). The lower doses of mustard meal used in the wet method of seed dressing are therefore recommended. Under field conditions, 15 g of mustard meal, together with 45 ml of water per 1 kg of seed, improved the wheat growth and grain quality parameters. The results justify the recommendation of this method to be used especially in organic farming due to the high potential of its agronomic usefulness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anonymous. (2019). Biopesticides market size, share and industry analysis by product type, source, mode of application, crops and regional forecast 2018–2025. Fortune Business Insights, p. 145. https://www.fortunebusinessinsights.com/industry-reports/biopesticides-market-100073). Accessed 2 Dec 2020.

  • Balesh, T., Zapata, F., & Aune, J. (2005). Evaluation of mustard meal as organic fertiliser on Tef (Eragrostis tef (Zucc) trotter) under field and greenhouse conditions. Nutrient Cycling in Agroecosystems, 73, 49–57. https://doi.org/10.1007/s10705-005-7685-7.

    Article  Google Scholar 

  • Bardin, S. D., Huang, H. C., & Moyer, J. R. (2004). Control of Pythium damping-off of sugar beet by seed treatment with crop straw powders and a biocontrol agent. Biological Control, 29(3), 453–460. https://doi.org/10.1016/j.biocontrol.2003.09.001.

    Article  Google Scholar 

  • Borgen, A., & Davanlou, M. (2001). Biological control of common bunt (Tilletia tritici). Journal of Crop Production, 3(1), 157–171. https://doi.org/10.1300/J144v03n01_14.

  • Borgen, A., & Kristensen L. (2001). Use of mustard flour and milk powder to control common bunt (Tilletia tritici) in wheat and stem smut (Urocystis occulta) in rye in organic agriculture. BCPC Symposium Proceedings No. 75: Seed Treatment: Challenges and Opportunities pp. 141–148.

  • Borgen A., & Nielsen, B. J. (2001). Effects of acetic acid in control of seed borne diseases. In: Proceedings of the BCPC symposium Seed treatmentchaIlenges and opportunities 26-27: 2.

  • Boydston, R. A., Morra, M. J., Borek, V., Clayton, L., & Vaughn, S. F. (2011). Onion and weed response to mustard (Sinapis alba) seed meal. Weed Science, 59(4), 546–552. https://doi.org/10.1614/WS-D-10-00185.1.

    Article  CAS  Google Scholar 

  • Copping, L. G., & Menn, J. J. (2000). Biopesticides: A review of their action, applications and efficacy. Pest Management Science, 56, 651–676. https://doi.org/10.1002/1526-4998(200008)56:8<651::AID-PS201>3.0.CO;2-U.

    Article  CAS  Google Scholar 

  • Czaja, K., Góralczyk, K., Struciński, P., Hernik, A., Korcz, W., Minorczyk, M., Łyczewska, M., & Ludwicki, J. K. (2015). Biopesticides – Towards increased consumer safety in the European Union. Pest Management Science, 71(1), 3–6. https://doi.org/10.1002/ps.3829.

    Article  CAS  PubMed  Google Scholar 

  • Dias, C., Aires, A., & Saavedra, M. (2014). Antimicrobial activity of isothiocyanates from cruciferous plants against methicillin-resistant Staphylococcus aureus (MRSA). International Journal of Molecular Sciences, 15(11), 19552–19561. https://doi.org/10.3390/ijms151119552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dilip, K. A. (2003). Fungal biotechnology in agricultural. Food and Environmental Applications. CRC Press. (pp. 524). ISBN-10: 0824747704 ISBN-13: 978-0123349101.

  • El-Salam, M. M. A., & Ibrahim, S. Y. (2014). Antimicrobial properties of 39 essential oils against thirteen food-borne microorganisms; efficacy and environmental hygiene of Prunus armeniaca in raw food preservation. Journal of Environmental and Occupational Science, 3, 162–169. https://doi.org/10.5455/jeos.20140904041308.

    Article  Google Scholar 

  • Fayzalla, E. A., El-Barougy, E., & El-Rayes, M. M. (2009). Control of soil-borne pathogenic fungi of soybean by biofumigation with mustard seed meal. Journal of Applied Sciences, 9(12), 2272–2279. https://doi.org/10.3923/jas.2009.2272.2279.

    Article  CAS  Google Scholar 

  • Gigot, J. A., Zasada, I. A., & Walters, T. W. (2013). Integration of brassicaceous seed meals into red raspberry production systems. Applied Soil Ecology, 64, 23–31. https://doi.org/10.1016/J.APSOIL.2012.10.013.

    Article  Google Scholar 

  • González-Lamothe, R., Mitchell, G., Gattuso, M., Diarra, M., Maloui, F., & Bouarab, K. (2009). Plant antimicrobial agents and their effects on plant and human pathogens. International Journal of Molecular Sciences, 10(8), 3400–3419. https://doi.org/10.3390/ijms10083400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handiseni, M., Brown, J., Zemetra, R., & Mazzola, M. (2012). Use of Brassicaceous seed meals to improve seedling emergence of tomato and pepper in Pythium ultimum infested soils. Archives of Phytopathology and Plant Protection, 45(10), 1204–1209. https://doi.org/10.1080/03235408.2012.660611.

    Article  Google Scholar 

  • Handiseni, M., Brown, J., Zemetra, R., & Mazzola, M. (2013). Effect of Brassicaceae seed meals with different glucosinolate profiles on Rhizoctonia root rot in wheat. Crop Protection, 48, 1–5. https://doi.org/10.1016/j.cropro.2013.01.006.

    Article  CAS  Google Scholar 

  • International Seed Testing Association. (2020). International rules for seed testing. Rules 2020. Seed Science and Technology, 1, I-19-8(8). https://www.ingentaconnect.com/content/ista/rules/2020/00002020/00000001/art00001;jsessionid=puoql2kt5vga.x-ic-live-01. Accessed 2 Dec 2020.

  • Kaur, R., Rampal, G., & Vig, A. P. (2011). Evaluation of antifungal and antioxidative potential of hydrolytic products of glucosinolates from some members of Brassicaceae family. Journal of Plant Breeding and Crop Science, 3(10), 218–228. http://www.academicjournals.org/JPBCS. Accessed 2 Dec 2020.

  • Kowalska, J. (2010). Spinosad effectively controls Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) in organic potato. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 60(3), 283–286. https://doi.org/10.1080/09064710902934205.

    Article  CAS  Google Scholar 

  • Kowalska, J. (2011). Effects of Trichoderma asperellum [T1] on Botrytis cinerea [Pers.: FR.], growth and yield of organic strawberry. Acta Scientiarum Polonorum, Hortorum Cultus, 10(4), 107–114.

    Google Scholar 

  • Kowalska, J., Tyburski, J., Krzymińska, J., & Jakubowska, M. (2020). Cinnamon powder: An in vitro and in vivo evaluation of antifungal and plant growth promoting activity. European Journal of Plant Pathology, 156, 237–243. https://doi.org/10.1007/s10658-019-01882-0.

    Article  CAS  Google Scholar 

  • Kumar, S., & Singh, A. (2015). Biopesticides: Present status and the future prospects. Journal of Fertilizers and Pesticides, 6(2), 100–129. https://doi.org/10.4172/2471-2728.1000e129.

    Article  Google Scholar 

  • Larkin, R. P., & Griffin, T. S. (2007). Control of soilborne potato diseases using Brassica green manures. Crop Protection, 26, 1067–1077. https://doi.org/10.1016/j.cropro.2006.10.004.

    Article  Google Scholar 

  • Leslie, J. F., & Summerell, B. A. (2008). The Fusarium laboratory manual (p. 388). New York: Wiley.

    Google Scholar 

  • Ma, Y., Gentry, T., Hu, P., Pierson, E., Gu, M., & Yin, S. (2015). Impact of brassicaceous seed meals on the composition of the soil fungal community and the incidence of Fusarium wilt on chili pepper. Applied Soil Ecology, 90, 41–48. https://doi.org/10.1016/j.apsoil.2015.01.016.

  • Manici, L. M., Lazzri, L., & Palmieri, S. (1997). In vitro fungitoxic activity of some glucosinolates and their enzyme-derived products toward plant pathogenic fungi. Journal of Agricultural and Food Chemistry, 45(7), 2768–2773. https://doi.org/10.1021/jf9608635.

    Article  CAS  Google Scholar 

  • Marrone, P. G. (2019). Pesticidal natural products – Status and future potential. Pest Management Science, 75, 2325–2340. https://doi.org/10.1002/p/1s.5433.

    Article  CAS  PubMed  Google Scholar 

  • Matny, O. N. (2015). Fusarium head blight and crown rot on wheat & barley: losses and health risks. Advances in Plants & Agriculture Research, 2(1), 38–43. https://doi.org/10.15406/apar.2015.02.00039.

    Article  Google Scholar 

  • Maupetit, P., Gatel, F., Cahagnier, B., Botorel, G., Charlier, M., Collet, B., Dauvillier, P., Laffiteau, J., & Roux, G. (1993). Quantitative estimation of fungal infestation of feedstuffs by determining ergosterol content. In 44th Annual Meeting of the EAAP, Aarhus, Denmark.

  • Mazzola, M., Agostini, A., & Cohen, M. F. (2017). Incorporation of Brassica seed meal soil amendment and wheat cultivation for control of Macrophomina phaseolina in strawberry. European Journal of Plant Pathology, 149(1), 57–71. https://doi.org/10.1007/s10658-017-1166-0.

    Article  CAS  Google Scholar 

  • Müller, H. M., & Schwadorf, K. (1990). Ergosterol-A parameter for the quantitative determination of fungal infestation in feedstuffs. Animal Research Development, 31, 71–81.

    Google Scholar 

  • Olson, S. (2015). An analysis of the biopesticide market now and where it is going. Outlooks on Pest Management., 26(5), 203–206. https://doi.org/10.1564/v26_oct_04.

    Article  Google Scholar 

  • Pedras, M. S. C., & Abdoli, A. (2017). Pathogen inactivation of cruciferous phytoalexins: Detoxification reactions, enzymes and inhibitors. RSC Advances., 7(38), 23633–23646. https://doi.org/10.1039/c7ra01574g.

    Article  CAS  Google Scholar 

  • Pedras, M. S. C., & To, Q. H. (2015). Non-indolyl cruciferous phytoalexins: Nasturlexins and tridentatols. A striking convergent evolution of defenses in terrestrial plants and marine animals? Phytochemistry, 113, 57–63. https://doi.org/10.1016/j.phytochem.2014.07.024.

    Article  CAS  PubMed  Google Scholar 

  • Plakholm, G., & Sollinger, J. (2000). Seed treatment for common wheat-bunt (Tilletia caries (DC) Tul.) according to organic farming principles. In: Proceedings of the l3th International IFOAM Scientic Conference. Basel 28-31/8-2000 p 139.

  • Prasad, P., & Kumar, J. (2017). Management of Fusarium wilt of chickpea using brassicas as biofumigants. Legume Research, 40(1), 178–182. https://doi.org/10.18805/lr.v0i0.7022.

    Article  Google Scholar 

  • Remlein-Starosta, D., Krzymińska, J., Kowalska, J., & Bocianowski, J. (2016). Evaluation of yeast-like fungi to protect Virginia mallow (Sida hermaphrodita) against Sclerotinia sclerotiorum. Canadian Journal of Plant Science., 96(2), 243–251. https://doi.org/10.1139/cjps-2015-0230.

    Article  CAS  Google Scholar 

  • Robinson, J. (2013). U.S. Patent No. 8.450.244. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  • Scherm, B., Balmas, V., Spanu, F., Pani, G., Delogu, G., Pasquali, M., & Migheli, Q. (2013). Fusarium culmorum: causal agent of foot and root rot and head blight on wheat. Molecular Plant Pathology, 14, 323–341. https://doi.org/10.1111/mpp.12011.

  • Schnürer, J., & Jansson, A. (1992). Ergosterol levels and mould colony forming units in Swedish grain of food and feed grade. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 42, 240–245.

  • Sharma, K. K., Singh, U. S., Sharma, P., Kumar, A., & Sharma, L. (2015). Seed treatments for sustainable agriculture – a review. Journal of Applied and Natural Science, 7(1), 521–539. https://doi.org/10.31018/jans.v7i1.641.

  • Singh, S., Kumar, R., Yadav, S., Kumari, P., Singh, R. K., & Kumar, C. R. (2018). Effect of bio-control agents on soil borne pathogens: A review. Journal of Pharmacognosy and Phytochemistry, 7(3), 406–411. http://www.phytojournal.com/archives/2018/vol7issue3/PartF/7-2-600-894.pdf. Accessed 2 Dec 2020.

  • Spiep, H., & Dutschke, J. (1991). Bekiimpfung des Weizensteinbrandes (Tilletia caries) im biologisch-dynamischen Landbau unter experimentellen und praktischen Bedingungen. Gesunde Pflanzen, 43, 264–270.

    Google Scholar 

  • Wachowska, U., Majchrzak, B., Borawska, M., & Karpinska, Z. (2003). Biological control of winter wheat pathogens by bacteria. Acta Fytotechnica et Zootechnica, 7, 345.

    Google Scholar 

  • Wagacha, J. M., & Muthomi, J. W. (2007). Fusarium culmorum: Infection process. Mechanisms of mycotoxin production and their role in pathogenesis in wheat. Crop Protection, 26(7), 877–885. https://doi.org/10.1016/j.cropro.2006.09.003.

    Article  CAS  Google Scholar 

  • Winter, W., Bänziger, I., Rüegger, A., Schachermayr, G., Krebs, H., et al. (2001). Skim milk powder and yellow mustard-meal treatment: Alternatives to the chemical seed-dressing for the control of common bunt in wheat. Agrarforschung Schweiz, 8(3), 118–123 file:///C:/Users/Jo%20Smith/Downloads/2001_03_121%20(1).pdf.

    Google Scholar 

  • Yoon, M.-Y., Cha, B., & Kim, J.-C. (2013). Recent trends in studies on botanical fungicides in agriculture. The Plant Pathology Journal, 29(1), 1–9. https://doi.org/10.5423/PPJ.RW.05.2012.0072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolanta Kowalska.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

N/A

Informed consent

N/A

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kowalska, J., Tyburski, J., Krzymińska, J. et al. Effects of seed treatment with mustard meal in control of Fusarium culmorum Sacc. and the growth of common wheat (Triticum aestivum ssp. vulgare). Eur J Plant Pathol 159, 327–338 (2021). https://doi.org/10.1007/s10658-020-02165-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-020-02165-9

Keywords

Navigation