Skip to main content
Log in

Rhizospheric microorganisms as potential biocontrol agents against Phytophthora austrocedri

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Austrocedrus chilensis [D.Don] Pic. Serm. et Bizarri (Pinales: Cupressaceae) is a keystone tree species in South America. Mortality of A. chilensis has been reported over most of its distribution in Argentina, and Phytophthora austrocedri has been identified as the causal agent. The aim of this work was to evaluate rhizospheric microorganisms present in A. chilensis roots as biocontrol agents against P. austrocedri. Mycelial growth of P. austrocedri was inhibited by seven fungal and four bacterial isolates in vitro. Interaction among isolates and P. austrocedri was microscopically studied. Isolates with high in vitro fungistatic or fungicide performance were molecularly identified and inoculated in plants to evaluate their ability to reduce the effect of the pathogen. Two of the bacterial isolates were able to reduce the symptoms in A. chilensis seedlings inoculated with P. austrocedri. These findings are promising since they may contribute to the development of a biocontrol strategy for the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Fattah, R. I., Abou-Zeid, A. M., & Altalhi, A. D. (2011). Allelopathic effects of Artemisia princeps and Launae sonchoids on rhizospheric fungi and wheat growth. African Journal of Microbiology Research, 5(4), 419–424. https://doi.org/10.1016/j.cropro.2008.05.007.

    Article  Google Scholar 

  • Abdullah, M. T., Ali, N. Y., & Suleman, P. (2008). Biological control of Sclerotinia sclerotiorum (lib.) de Bary with Trichoderma harzianum and Bacillus amyloliquefaciens. Crop Protection, 27(10), 1354–1359. https://doi.org/10.1016/j.cropro.2008.05.007.

    Article  Google Scholar 

  • Báez-Vallejo, N., Camarena-Pozos, D. A., Monribot-Villanueva, J. L., Ramírez-Vázquez, M., Carrión-Villarnovo, G. L., Guerrero-Analco, J. A., Partida-Martínez, L. P., & Reverchon, F. (2020). Forest tree associated bacteria for potential biological control of Fusarium solani and of Fusarium kuroshium, causal agent of Fusarium dieback. Microbiological Research, 235, 126440.

    Article  Google Scholar 

  • Barnett, H. L., & Hunter, B. B. (1998). Descriptions and illustrations of genera. Illustrated genera of imperfect fungi, 4th edn. American Phytopathological Society, St. Paul, MN, 68-69.

  • Bartholomew, J. W., & Mittwer, T. (1952). The gram stain. Bacteriological Reviews, 16(1), 1–29.

    Article  CAS  Google Scholar 

  • Berger, G., Czarnocka, K., Cochard, B., Oszako, T., & Lefort, F. (2015). Biocontrol Endotherapy with Trichoderma spp. and Bacillus amyloliquefaciens against Phytophthora spp.: A comparative study with phosphite treatment on Quercus robur and Fagus sylvatica. Journal of Agricultural Science and Technology A, 5, 428-439. https://doi.org/10.17265/2161-6256/2015.06.005.

  • Cazorla, F. M., & Mercado-Blanco, J. (2016). Biological control of tree and woody plant diseases: An impossible task? BioControl, 61(3), 233–242. https://doi.org/10.1007/s10526-016-9737-0.

    Article  Google Scholar 

  • Chinn, S. H. F. (1953). A slide technique for the study of fungi and actinomycetes in soil with special reference to Helminthosporium sativum. Canadian Journal of Botany, 31(6), 718–724. https://doi.org/10.1139/b53-053.

    Article  Google Scholar 

  • Cuervo-Parra, J. A., Sánchez-López, V., Romero-Cortes, T., & Ramírez-Lepe, M. (2014). Hypocrea/Trichoderma viridescens ITV43 with potential for biocontrol of Moniliophthora roreri Cif par, Phytophthora megasperma and Phytophthora capsici. African Journal of Microbiology Research, 8(16), 1704–1712. https://doi.org/10.5897/AJMR2013.6279.

    Article  Google Scholar 

  • Dahm, M., Brzezinska, A. J., Wrótniak-Drzewiecka, W., Golinska, P., Rozycki, H., & Rai, M. (2015). Myxobacteria as a potential biocontrol agent effective against pathogenic fungi of economically important forest trees. Dendrobiology, 74, 13–24. https://doi.org/10.12657/denbio.074.002.

    Article  CAS  Google Scholar 

  • Dix, N. J., & Webster, J. (1995). Fungi of soil and rhizosphere. In Fungal ecology (pp. 172–202). Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0693-1_7, Fungi of Soil and Rhizosphere.

  • Dobbs, C. G., & Hinson, W. H. (1953). A widespread fungistasis in soils. Nature, 172(4370), 197–199.

    Article  CAS  Google Scholar 

  • Elad, Y., Chet, I., & Katan, J. (1980). Trichoderma harzianum: A biocontrol agent effective against Sclerotium rolfsii and Rhizoctonia solani. Phytopathology, 70(2), 119–121. https://doi.org/10.1094/Phyto-70-119.

    Article  Google Scholar 

  • Ezziyyani, M., Sánchez, C. P., Ahmed, A. S., Requena, M. E., & Castillo, M. E. C. (2004). Trichoderma harzianum como biofungicida para el biocontrol de Phytophthora capsici en plantas de pimiento (Capsicum annuum L.). In Anales de biología (No. 26, pp. 35-45). Servicio de Publicaciones de la Universidad de Murcia.

  • Fang, J. G., & Tsao, P. H. (1995). Efficacy of Penicillium funiculosum as a biological control agent against Phytophthora root rots of azalea and citrus. Phytopathology, 85(8), 871–878. https://doi.org/10.1094/Phyto-85-871.

    Article  Google Scholar 

  • Greslebin, A. G., & Hansen, E. M. (2010). Pathogenicity of Phytophthora austrocedrae on Austrocedrus chilensis and its relation with mal del ciprés in Patagonia. Plant Pathology, 59(4), 604–612. https://doi.org/10.1111/j.1365-3059.2010.02258.x.

    Article  Google Scholar 

  • Greslebin, A. G., Hansen, E. M., & Sutton, W. (2007). Phytophthora austrocedrae sp. nov., a new species associated with Austrocedrus chilensis mortality in Patagonia (Argentina). Mycological Research, 111(3), 308–316. https://doi.org/10.1016/j.mycres.2007.01.008.

    Article  PubMed  Google Scholar 

  • Han, J., Sun, L., Dong, X., Cai, Z., Sun, X., Yang, H., Wang, Y., & Song, W. (2005). Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Systematic and Applied Microbiology, 28(1), 66–76. https://doi.org/10.1016/j.syapm.2004.09.003.

    Article  CAS  PubMed  Google Scholar 

  • Kong, W. L., Li, P. S., Wu, X. Q., Wu, T. Y., & Sun, X. R. (2020). Forest tree associated bacterial diffusible and volatile organic compounds against various phytopathogenic fungi. Microorganisms, 8(4), 590. https://doi.org/10.3390/microorganisms8040590.

    Article  PubMed Central  Google Scholar 

  • Larena, I., Sabuquillo, P., Melgarejo, P., & De Cal, A. (2003). Biocontrol of Fusarium and Verticillium wilt of tomato by Penicillium oxalicum under greenhouse and field conditions. Journal of Phytopathology, 151(9), 507–512. https://doi.org/10.1046/j.1439-0434.2003.00762.x.

    Article  Google Scholar 

  • Loliam, B., Morinaga, T., & Chaiyanan, S. (2012). Biocontrol of Phytophthora infestans, fungal pathogen of seedling damping off disease in economic plant nursery. Psyche: A Journal of Entomology., 2012, 1–6. https://doi.org/10.1155/2012/324317.

    Article  Google Scholar 

  • Pastorino, M. J., Gallo, L. A., & Hattemer, H. H. (2004). Genetic variation in natural populations of Austrocedrus chilensis, a cypress of the Andean-Patagonian Forest. Biochemical Systematics and Ecology, 32(11), 993–1008. https://doi.org/10.1016/j.bse.2004.03.002.

    Article  CAS  Google Scholar 

  • Serra, R., Lourenco, A., Alipio, P., & Venâncio, A. (2006). Influence of the region of origin on the mycobiota of grapes with emphasis on Aspergillus and Penicillium species. Mycological Research, 110(8), 971–978. https://doi.org/10.1016/j.mycres.2006.05.010.

    Article  PubMed  Google Scholar 

  • Shukla, A. K., Tiwari, B. K., & Mishra, R. R. (1987). Effect of Benomyl, copper oxychloride and Mancozeb on rhizosphere microflora of potato. Proc. Indian mm. Sci. Acad, 353(3), 273–213.

    Google Scholar 

  • Singh, A., & Islam, M. N. (2010). In vitro evaluation of Trichoderma spp. against Phytophthora nicotianae. Int. J. Expt. Agric, 1(1), 20–25.

    Google Scholar 

  • Vélez, M. L., Silva, P. V., Troncoso, O. A., & Greslebin, A. G. (2012). Alteration of physiological parameters of Austrocedrus chilensis by the pathogen Phytophthora austrocedrae. Plant Pathology, 61(5), 877–888. https://doi.org/10.1111/j.1365-3059.2011.02585.x.

    Article  Google Scholar 

  • Yang, X., & Hong, C. (2019). Biological control of Phytophthora blight by Pseudomonas protegens strain 14D5. European Journal of Plant Pathology, 156, 591–601. https://doi.org/10.1007/s10658-019-01909-6.

    Article  Google Scholar 

  • Yu, G. Y., Sinclair, J. B., Hartman, G. L., & Bertagnolli, B. L. (2002). Production of iturin a by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biology and Biochemistry, 34(7), 955–963. https://doi.org/10.1016/S0038-0717(02)00027-5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Administración de Parques Nacionales for kindly allowing us to work in National Parks. This work was supported by the Agencia Nacional de Promoción Científica y Técnica of Argentina (grant number ANPCyT/FONCyT/PICT 1933/15).

Availability of data and material

The datasets generated in the current study are available in Genbank (https://www.ncbi.nlm.nih.gov/genbank/) and treebase (https://www.treebase.org/) repositories. Accession numbers for Genbank are given in the text, but sequences are still under revision and will be processed and released soon. Treebase data are available in http://purl.org/phylo/treebase/phylows/study/TB2:S25799. It will become the permanent and resolvable resource locator after submission has been approved and the data will be made public (treebase policity). Reviewer access URL: http://purl.org/phylo/treebase/phylows/study/TB2:S25799?x-access-code=debff56123be4695744124a82ce07b3c&format=html. This URL provide reviewers with limited, read-only access to the data, even if this submission has not yet been approved and the data are not yet public.

Code availability

Not applicable.

Funding

This work was supported by the Agencia Nacional de Promoción Científica y Técnica of Argentina (grant number ANPCyT/FONCyT/PICT 1933/15).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: J.A Marfetán, M.L. Velez, A.G. Greslebin.

Methodology: J.A Marfetán, M.L. Velez, A.G. Greslebin.

Formal Analysis: J.A Marfetán.

Investigation: J.A Marfetán, M.L. Velez; L.E. Taccari.

Resources: M.L. Velez, A.G. Greslebin, L.E. Taccari.

Writing – Original Draft: J.A Marfetán.

Writing – Review & Editing: All Authors.

Visualization: J.A Marfetán.

Supervision: M.L. Velez, A.G. Greslebin.

Project Administration: M.L. Velez, A.G. Greslebin.

Funding Acquisition: M.L. Velez, A.G. Greslebin.

Corresponding author

Correspondence to María Laura Vélez.

Ethics declarations

Conflicts of interest/competing interests

The authors declare that they have no conflict of interest.

Ethics approval

The manuscript complies to the Ethical Rules applicable for this journal.

Consent to participate

All authors whose names appear on the submission agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Consent for publication

All authors agreed with the content and gave explicit consent to submit this work.

Electronic supplementary material

Online Resource 1

Phylogeny of Penicillium isolates illustrating species relationships inferred from joint ML analysis of Beta-tubulin gene analysis. Poorly aligned portions and divergent positions were deleted using Gblocks. Phylogenies were reconstructed using maximum likelihood (ML), Bayesian inference (BI) and maximum parsimony (MP) and complete deletion of gaps. The tree was drawn to scale, with branch lengths measured in the number of substitutions per site. Clades with high support (ML and MP bootstrap values ≥70% and BI posterior probabilities ≥0.85) were marked with asterisk. A- Phylogeny of Fasciculata section. B- Phylogeny of Ramosa section. C- Phylogeny of Aspergilloides section. D- Phylogeny of Exalicum section. (PNG 1278 kb)

High Resolution Image (TIF 33880 kb)

Online Resource 2

Phylogeny of Trichoderma isolate illustrating species relationships of ITS region analysis. Poorly aligned portions and divergent positions were deleted using Gblocks. Phylogenies were reconstructed using maximum likelihood (ML), Bayesian inference (BI) and maximum parsimony (MP) and partial deletion (95%) of gaps. Clades with high support (ML and MP bootstrap values ≥70% and BI posterior probabilities ≥0.85) were marked with asterisk. No support for the node is indicated by a dash. The tree was drawn to scale, with branch lengths measured in the number of substitutions per site (PNG 348 kb)

High Resolution Image (TIF 12013 kb)

ESM 1

(FAS 3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marfetán, J.A., Greslebin, A.G., Taccari, L.E. et al. Rhizospheric microorganisms as potential biocontrol agents against Phytophthora austrocedri. Eur J Plant Pathol 158, 721–732 (2020). https://doi.org/10.1007/s10658-020-02113-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-020-02113-7

Keywords

Navigation