Skip to main content

Advertisement

Log in

Fusarium species and mycotoxin contamination in maize in Buenos Aires province, Argentina

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Maize is one of the most important crops in Argentina. This crop can be affected by the presence of different Fusarium species, causing two distinct diseases known as Fusarium ear rot and Gibberella ear rot. In this study, a total of 90 samples from commercial fields of Buenos Aires province in Argentina were collected during the 2015, 2016 and 2017 harvest seasons with the aim to evaluate Fusarium species presence, mycotoxin content and to establish a relationship between the main Fusarium mycotoxins infecting maize grains and the environmental conditions. The results showed that F. verticillioides was the most isolated species followed by F. subglutinans, species of Fusarium graminearum species complex, F. proliferatum, and F. cerealis varying their presence according to the harvest season evaluated. Regarding mycotoxins, deoxynivalenol and 3-acetyl-deoxynivalenol showed content from 281.26 ± 22.51 to 359.02 ± 42.57 μg/kg in the 3 yrs evaluated, while 15-acetyl-deoxynivalenol, nivalenol, and zearalenone were not found. With regard to B1 and B2 fumonisins, these mycotoxins were detected below the detection limit of 0.3 μg/kg in some maize samples in the 3 yrs. The selection of maize genotypes, cultural practices, and climatic conditions could be responsible for the Fusarium species found and their respective mycotoxin production. Due to worldwide concern about food security and the potential risk the global climate change could impart, it will be necessary to develop predictive models based on meteorological conditions to determine the risk of Fusarium presence and mycotoxin production in maize similar to those developed in other crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguín, O., Cao, A., Pintos, C., Santiago, R., Mansilla, P., & Butrón, A. (2014). Occurrence of Fusarium species in maize kernels grown in northwestern Spain. Plant Pathology, 63, 946–951.

    Google Scholar 

  • Arroyo-Manzanares, N., Huertas-Perez, J. F., Gamiz-Gracia, L., & García-Campaña, A. M. (2015). Simple and efficient methodology to determine mycotoxins in cereals rups. Food Chemistry, 177, 274–279.

    CAS  PubMed  Google Scholar 

  • Bakan, B., Melcion, D., Richard-molard, D., & Cahagnier, B. (2002). Fungal growth and Fusarium mycotoxin content in isogenic traditional maize and genetically modified maize grown in France and Spain. Journal of Agricultural and Food Chemistry, 50, 728-731.

  • Bankole, S. A., & Mabekoje, O. O. (2004). Occurrence of aflatoxins and fumonisins in pre-harvest maize from South-Western Nigeria. Food Additives & Contaminants, 21, 251–255.

    CAS  Google Scholar 

  • Bily, A. C., Reid, L. M., Taylor, H. J., Johnstone, D., Malouin, C., Burt, A. j., Backan, B., Regnault-Roger, C., Pauls, K. P., Arnason, J. T., & Philogene, B. J. R. (2003). Dehydromers of ferulic acid in maize grain pericarp and aleurone: Resistance factors to Fusarium graminearum. Phytopathology, 93, 712–719.

    CAS  PubMed  Google Scholar 

  • Blandino, M., Scarpino, V., Giordano, D., Sulyok, M., Krska, R., Vanara, F., & Reyneri, A. (2017). Impact of sowing time, hybrid and environmental conditions on the contamination of maize by emerging mycotoxins and fungal metabolites. Italian Journal of Agronomy, 12, 215–224.

    Google Scholar 

  • Bottalico, A. (1998). Fusarium diseases of cereals: Species complex and related mycotoxin profiles, in Europe. Journal of Plant Pathology, 80, 85–103.

    CAS  Google Scholar 

  • Cao, A., Santiago, R., Ramos, A. J., Souto, X. C., Aguín, O., Malvar, R. A., & Butrón, A. (2014). Critical environmental and genotypic factors for Fusarium verticillioides infection, fungal growth and fumonisin contamination in maize grown in northwestern Spain. International Journal of Food Microbiology, 177, 63–71.

    CAS  PubMed  Google Scholar 

  • Castañares, E., Dinolfo, M. I., Moreno, M. V., Berón, C., & Stenglein, S. A. (2013). Fusarium cerealis associated with barley seeds in Argentina. Journal of Phytopathology, 161, 586–589.

    Google Scholar 

  • Castañares, E., Ramirez Alburquerque, D. R., Dinolfo, M. I., Fernandez, P. V., Patriarca, A., & Stenglein, S. A. (2014). Trichothecene genotypes and production profiles of Fusarium graminearum isolates obtained from barley cultivated in Argentina. International Journal of Food Microbiology, 179, 57–63.

    PubMed  Google Scholar 

  • Castañares, E., Dinolfo, M. I., Del Ponte, E. M., Pan, D., & Stenglein, S. A. (2016). Species composition and genetic structure of Fusarium graminearum species complex populations affecting the main barley growing regions of South America. Plant Pathology, 65, 930–939.

    Google Scholar 

  • Chulze, S. N., Ramírez, M. L., Torres, A., & Leslie, J. F. (2000). Genetic variation in Fusarium section Liseola from no-till maize in Argentina. Applied and Environmental Microbiology, 66, 5312–5315.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Codex Alimentarius Commission (2015). Food and Agriculture Organizations of the United Nations. Joint FAO/WHO Food Standards Programme. 38th Session. REP15/CF.

  • Covarelli, L., Stifano, S., Beccari, G., Raggi, L., Lattanzio, V. M. T., & Albertini, E. (2012). Characterizacion of Fusarium verticillioides strains isolated from maize in Italy: Fumonisin production, phatogenicity and genetic variability. Food Microbiology, 31, 17–24.

    CAS  PubMed  Google Scholar 

  • Czembor, E., Stępień, L., & Waśkiewicz, A. (2015). Effect of environmental factors on Fusarium species and associated mycotoxins in maize grain grown in Poland. Plos One, 10(7), e0133644. https://doi.org/10.1371/journal.pone.0133644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De La Campa, R., Hooker, D. C., Miller, J. D., Schaafsma, A. W., & Hammond, B. G. (2005). Modeling effects of environment, insect damage, and Bt genotypes on fumonisin accumulation in maize in Argentina and the Philippines. Mycopathologia, 159, 539–552.

    PubMed  Google Scholar 

  • De Rossi, R., Guerra, F., Plaza, M. C., Vuletic, E., Brücher, E., & Guerra, G. (2016). Enfermedades del maíz en las últimas cinco campañas. Resiliar. XXIV Congreso Aapresid.

  • Desjardins, A. E. (2008). Natural product chemistry meets genetics: When is a genotype a chemotype? Journal of Agricultural and Food Chemistry, 56, 7587–7592.

    CAS  PubMed  Google Scholar 

  • Desjardins, A. E., & Proctor, R. H. (2007). Molecular biology of Fusarium mycotoxins. International Journal of Food Microbiology, 119, 47–50.

    CAS  PubMed  Google Scholar 

  • Dowd, P. F., Bartelt, R. J., Beck, J. J., Barnett, J., Berhow, M. A., Duvick, J. P., Lagrimini, M. L., Molid, G. A., & White, D.G. (2002). Insect management for reduction of mycotoxins in Midwest corn FY-2001 report. In: Proceedings of the 1st fungal genomics, 2nd fumonisin elimination and 14th aflatoxin elimination workshops.

  • Duan, C., Qin, Z., Yang, Z., Li, W., Sun, S., Zhu, Z., & Wang, X. (2016). Identification of pathogenic Fusarium spp. causing maize ear rot and potential mycotoxin production in China. Toxins, 8, 186.

    PubMed Central  Google Scholar 

  • EC. (2007). Commission regulation (EC) N° 1126/2007. Setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products. Official Journal of European Union, 255, 14–17.

    Google Scholar 

  • FAO (2013). Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). Anteproyecto de niveles máximos para el deoxinivalenol en los cereales y productos a base de cereales y planes de muestreo asociados. Available: ftp://ftp.fao.org/codex/meetings/cccf/cccf7/cf07_07_Add1s.pdf

  • Flett, B. C., & McLaren, N. W. (1998). Incidence of ear rot pathogens under alternating corn tillage practices. Plant Disease, 82, 781–784.

    CAS  PubMed  Google Scholar 

  • Fumero, M. V., Reynoso, M. M., & Chulze, S. (2015). Fusarium temperatum and Fusarium subglutinans isolated from maize in Argentina. International Journal of Food Microbiology, 199, 86–92.

    CAS  PubMed  Google Scholar 

  • Giannitti, F., Odriozola, E., Margineda, C. A., Fernández, E., Cámpora, L., Weber, N., Clemente, G., & García, J.P. (2011). Leucoencefalomalacia equina por pastoreo de maíz contaminado con fumonisinas en argentina. Sitio Argentino de Producción animal. www.produccion-animal.com.ar

  • Goertz, A., Zuehlke, S., Spiteller, M., Steiner, U., Dehue, H. W., Waalwijk, C., de Vries, I., & Oerke, E. C. (2010). Fusarium species and mycotoxin profiles on commercial maize hybrids in Germany. European Journal of Plant Pathology, 128, 101–111.

    CAS  Google Scholar 

  • Gonzalez, H. H. L., Martínez, E. J., Pacín, A. M., Resnik, S. L., & Sydenham, E. W. (1999). Natural co-ocurrence of fumonisins, deoxynivalenol, zearalenone and aflatoxins in field trial corn in Argentina. Food Additives and Contaminants, 16, 565–569.

    CAS  PubMed  Google Scholar 

  • Gromadzka, K., Górna, K., Chełkowski, J., & Waśkiewicz, A. (2016). Mycotoxins and related Fusarium species in preharvest maize ear rot in Poland. Plant, Soil & Environment, 62, 348–354.

    CAS  Google Scholar 

  • Jurado, M., Vázquez, C., Marín, S., Sanchís, V., & González Jaén, M. T. (2006). PCR-based strategy to detect contamination with mycotoxigenic Fusarium species in maize. Systematics and Applied Microbiology, 29, 681–689.

    CAS  Google Scholar 

  • Kokkonen, M., Ojala, L., Parikka, P., & Jestoi, M. (2010). Mycotoxin production of selected Fusarium species at different culture conditions. International Journal of Plant Pathology, 143, 17–25.

    CAS  Google Scholar 

  • Kulik, T., Busko, M., Bilska, K., Ostrowska-Kolodziejczak, A., van Diepeningen, A., Perkowski, J., & Stenglein, S. A. (2016). Depicting the discrepancy between tri genotype and chemotype on the basis of strain CBS 139514 from a field population of F. graminearum sensu stricto from Argentina. Toxins, 8, 330.

    PubMed Central  Google Scholar 

  • Lanza, F. E., Zambolim, L., Veras da Costa, R., Vieira Queiroz, V. A., Cota, L. V., da Silva, D. D., Coelho de Souza, A. G., & Fontes Figueiredo, J. E. (2014). Prevalence of fumonisin-producing Fusarium species in Brazilian corn grains. Crop Protection, 65, 232–237.

    CAS  Google Scholar 

  • Larsen, J. C., Hunt, J., Perrin, I., & Ruckenbauer, P. (2004). Workshop on trichothecenes with a focus on DON: Summary report. Toxicological Letters, 153, 1–22.

    CAS  Google Scholar 

  • Leslie, J. F., & Summerell, B. A. (2006). The Fusarium laboratory manual. Oxford: Blackwell Publishing.

    Google Scholar 

  • Lew, H., Adler, A., & Edinger, W. (1991). Moniliformin and European corn borer (Ostrinia nubilalis). Mycotoxin Research, 7, 71–76.

    PubMed  Google Scholar 

  • Llorens, A., Mateo, R., Hinojo, M. J., Valle-Algarra, F. M., & Jimenez, M. (2004). Influence of environmental factors on the biosynthesis of type B trichothecenes by isolates of Fusarium spp. from Spanish crops. International Journal of Food Microbiology, 94, 43–54.

    CAS  PubMed  Google Scholar 

  • Logrieco, A., Mule, G., Moretti, A., & Bottalico, A. (2002). Toxigenic Fusarium species and mycotoxins associated with maize ear rot in Europe. European Journal Plant Pathology, 108, 597–609.

    CAS  Google Scholar 

  • Maiorano, A., Reyneri, A., Sacco, D., Magni, A., & Ramponi, C. (2009). A dynamic risk assessment model (FUMAgrain) of fumonisin synthesis by Fusarium verticillioides in maize grains in Italy. Crop Protection, 28, 243–256.

    CAS  Google Scholar 

  • Marocco, A., Gavazzi, C., Pietri, A., & Tabaglio, V. (2008). On fumonisin incidence in monoculture maize under no-till, conventional tillage and two nitrogen fertilisation levels. Journal of the Science of Food and Agriculture, 88, 1217–1221.

    CAS  Google Scholar 

  • Martínez, M., Moschini, R., Benavidez, G., & Pitterle, A. (2015). Predicción de deoxinivalenol en grano de trigo. https://www.engormix.com/micotoxinas/articulos/prediccion-deoxinivalenol-grano-trigo-t32444.htm

  • MINAGRI (2018). Ministerio de Agroindustria, presidencia de la Nación. http://datosestimaciones.magyp.gob.ar/

  • Mulé, G., Susca, A., Stea, G., & Moretti, A. (2004). A species-specific PCR assay based on the calmodulin partial gene for identification of Fusarium verticillioides, F. proliferatum and F. subglutinans. European Journal of Plant Pathology, 110, 495–502.

    Google Scholar 

  • Munkvold, G. P. (2003). Cultural and genetic approaches to managing mycotoxins in maize. Annual Review of Phytopathology, 41, 99–116.

    CAS  PubMed  Google Scholar 

  • Nicholson, P., Simpson, D. R., Weston, G., Rezanoor, H. N., Lees, A. K., Parry, D. W., & Joyce, D. (1998). Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiological and Molecular Plant Pathology, 53, 17–37.

    CAS  Google Scholar 

  • Pacín, A. M., Broggi, L. E., Resnik, S. L., & Gonzalez, H. H. L. (2001). Mycoflora and mycotoxins natural occurrence in corn from Entre Ríos Province, Argentina. Mycotoxin Research, 17, 31–37.

    Google Scholar 

  • Patiño, B., Mirete, S., González-Jaén, M. T., Mulé, G., Rodríguez, M. T., & Vázquez, C. (2004). PCR detection assay of fumonisin-producing Fusarium verticillioides strains. Journal of Food Protection, 67, 1278–1283.

    PubMed  Google Scholar 

  • Proctor, R. H., Desjardins, A. E., Plattner, R. D., & Hohn, T. M. (1999). A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in Gibberella fijukoroi mating population a. Fungal Genetics and Biology, 27, 100–112.

    CAS  PubMed  Google Scholar 

  • Qiu, J., Xu, J., Dong, F., Yin, X., & Shi, J. (2015). Isolation and characterization of Fusarium verticillioides from maize in eastern China. European Journal of Plant Pathology, 4, 791–800.

    Google Scholar 

  • Quarta, A., Mita, G., Haidukowski, M., Logrieco, A., Mulé, G., & Visconti, A. (2006). Multiplex PCR assay for the identification of nivalenol, 3- and 15-acetyl-deoxynivalenol chemotypes in Fusarium. FEMS Microbiology Letters, 259, 7–13.

    CAS  PubMed  Google Scholar 

  • Reynoso, M. M., Ramirez, M. L., Torres, A. M., & Chulze, S. N. (2011). Trichothecene genotypes and chemotypes in Fusarium graminearum strains isolated from wheat in Argentina. International Journal of Food Microbiology, 145, 444–448.

    CAS  PubMed  Google Scholar 

  • Sampietro, D. A., Díaz, C. G., Gonzalez, V., Vattuone, M. A., Ploper, L. D., Catalán, C. A. N., & Ward, T. J. (2011). Species diversity and toxigenic potential of Fusarium graminearum complex isolates from maize fields in Northwest Argentina. International Journal of Food Microbiology, 145, 359–364.

    CAS  PubMed  Google Scholar 

  • Somma, S., Petruzzella, A. L., Logrieco, A. F., Meca, G., Cacciola, O. S., & Moretti, A. (2014). Phylogenetic analyses of Fusarium graminearum strains from cereals in Italy, and characterization of their molecular and chemical chemotypes. Crop and Pasture Science, 65, 52–60.

    Google Scholar 

  • Stenglein, S. A., & Balatti, P. A. (2006). Genetic diversity of Phaeoisariopsis griseaola in Argentina as revealed by virulence and molecular markers. Physiological and Molecular Plant Pathology, 68, 158–167.

    CAS  Google Scholar 

  • Stewart, D. W., Reid, L. M., Nicol, R. W., & Schaafsma, A. W. (2002). A mathematical simulation of growth of Fusarium in maize ears after artificial inoculation. Phytopathology, 92, 534–541.

    CAS  PubMed  Google Scholar 

  • Sugiura, Y., Watanabe, Y., Tanaka, T., Yamamoto, S., & Ueno, Y. (1990). Occurrence of Gibberella zeae strains that produce both nivalenol and deoxynivalenol. Applied and Environmental Microbiology, 56, 3047–3051.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torres, A., Reynoso, M. M., Rojo, F., Ramírez, M. L., & Chulze, S. (2001). Fusarium species (section Liseola) and its mycotoxin in maize harvested in northern Argentina. Food Additives & Contaminants, 18, 836–843.

    CAS  Google Scholar 

  • USDA (2018). Available at: https://www.fas.usda.gov/data/argentina-grain-and-feedupdate-7 [Accessed May 29, 2018].

  • Warfield, C. Y., & Davis, R. M. (1996). Importance of the husk covering on the susceptibility of corn hybrids to Fusarium ear rot. Plant Disease, 80, 208–210.

    Google Scholar 

  • Wu, F. (2007). Measuring the economic impacts of Fusarium toxins in animal feeds. Animal Feed Science and Technology, 137, 363–374.

    CAS  Google Scholar 

  • Yoder, W. T., & Christianson, L. M. (1997). Species-specific primers resolve members of Fusarium section Fusarium. Taxonomic status of the edible “Quorn” fungus reevaluated. Fungal Genetics and Biology, 23, 68–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sebastián Stenglein or María I. Dinolfo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

No human and/or animal participants were involved in this research.

Informed consent

All authors consent to this submission.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castañares, E., Martínez, M., Cristos, D. et al. Fusarium species and mycotoxin contamination in maize in Buenos Aires province, Argentina. Eur J Plant Pathol 155, 1265–1275 (2019). https://doi.org/10.1007/s10658-019-01853-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-019-01853-5

Keywords

Navigation