Skip to main content
Log in

Diversity of trichothecene genotypes of Fusarium graminearum sensu stricto from winter wheat in Serbia

  • Original Article
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Data related to genetic diversity of F. graminearum chemotypes in Serbia are limited, thus the main objective of this study was to analyze the divergence of genes associated with the trichothecene cluster. F. graminearum was shown to be the dominant Fusarium species in Serbia occurring with frequency of 65.6% in 2016/2017 growing season. Isolates of F. graminearum dominantly belonged to SCAR type 1 (104/105) producing PCR product of 420 bp, but one isolate was proven to be SCAR type 6 producing PCR product of 400 bp. This is the first report of the presence of SCAR type 6 in Southeastern Europe. Results from this study reveal that F. graminearum populations were shown to be DON-DON chemotype with respect to Tri7 and Tri13 genes. All but one of these isolates were 15-AcDON chemotypes based on Tri3 gene. One isolate carried a deletion of Tri7 and was found to be 3-AcDON by using Tri303F/R primer pair. This is the first record on the presence of a 3-AcDON isolate with the Tri7 deletion in Serbia. The Tri7F/Tri7DON primer pair was not effective if isolates carried more than four 11-bp repeats in the Tri7 gene. Primer pair GzTri7f1/r1 was proven to be more effective in comparison with Tri7F/Tri7DON. Genetic variation ranged from 57 to 80% with no significant association of Tri7 alleles with localities. Results of this study have brought new insights into the distribution and population structure of F. graminearum in Serbia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amarasinghe, C., Wang, J. H., Liao, Z. C., & Dilantha Fernando, W. G. (2011). Difference in TRI13 gene sequences between the 3-Acetyldeoxynivalenol producing Fusarium graminearum chemotypes from Canada and China. International Journal of Molecular Sciences, 12, 6164–6175.

    Article  CAS  Google Scholar 

  • Aoki, T., Ward, T. J., Kistler, H. C., & O’Donnell, K. (2012). Systematics, phylogeny and trichothecene mycotoxin potential of Fusarium head blight cereal pathogens. JSM Mycotoxins, 62, 91–102.

    Article  CAS  Google Scholar 

  • Bottalico, A., & Perrone, G. (2002). Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. European Journal of Plant Pathology, 108, 611–624.

    Article  CAS  Google Scholar 

  • Carter, J. P., Rezanoor, H. N., Holden, D., Dejardins, A. E., Plattner, R. D., & Nicholson, P. (2002). Variation in pathogenicity associated with the genetic diversity of Fusarium graminearum. European Journal of Plant Pathology, 108, 537–583.

    Article  Google Scholar 

  • Chandler, E. A., Duncan, R. S., Thomsett, M. A., & Nicholson, P. (2003). Development of PCR assays to Tri7 and Tri13 and characterisation of chemotypes of Fusarium graminearum, Fusarium culmorum and Fusarium cerealis. Physiological and Molecular Plant Pathology, 62, 355–367.

    Article  CAS  Google Scholar 

  • Cornea, C. P., Israel-Roming, F., Ciuca, M., & Voaides, C. (2013). Natural occurrence of Fusarium species and corresponding chemotypes in wheat scab complex from Romania. Romanian Biotechnological Letters, 18(6), 2013.

    Google Scholar 

  • de Kuppler, M. A. L., Steiner, U. M., Sulyok, M., Krska, R., & Oerke, E.-C. (2011). Genotyping and phenotyping of Fusarium graminearum isolates from Germany related to their mycotoxin biosynthesis. International Journal of Food Microbiology, 151, 78–86.

    Article  Google Scholar 

  • Demeke, T., Clear, R. M., Patrick, S. K., & Gaba, D. (2005). Species-specific PCR-based assays for the detection of Fusarium species and a comparison with the whole seed agar plate method and trichothecene analysis. International Journal of Food Microbiology, 103, 271–284.

    Article  CAS  Google Scholar 

  • Freeland, J. (2005). Molecular ecology. Chichester: John Wiley & Sons, Ltd.

    Google Scholar 

  • Jennings, P., Coates, M. E., Walsh, K., Turner, J. A., & Nicholson, P. (2004). Determination of deoxynivalenol- and nivalenol-producing chemotypes of Fusarium graminearum isolated from wheat crops in England and Wales. Plant Pathology, 53, 643–652.

    Article  CAS  Google Scholar 

  • Kimura, M., Kaneko, I., Komiyama, M., Takatsuki, A., Koshino, H., Yoneyama, K., & Yamaguchi, I. (1998). Trichothecene 3-O-acetyltransferase protects both the producing organism and transformed yeast from related mycotoxins. Journal of Biological Chemistry, 273, 1654–1661.

    Article  CAS  Google Scholar 

  • Kimura, M., Tokai, T., O’Donnell, K., Ward, T. J., Fujimura, M., Hamamoto, H., Shibata, T., & Yamaguchi, I. (2003). The trichothecene biosynthesis cluster of Fusarium graminearum F15 contains a limited number of essential pathway genes and expressed non-essential genes. FEBS Letters, 539, 105–110.

    Article  CAS  Google Scholar 

  • Lee, T., Oh, D.-W., Kim, H.-S., Lee, J., Kim, Y.-H., Yun, S.-H., & Lee, Y.-W. (2001). Identification of deoxynivalenol- and nivalenolproducing chemotypes of Gibberella zeae by using PCR. Applied and Environmental Microbiology, 67, 2966–2972.

    Article  CAS  Google Scholar 

  • Lee, J., Chang, I-Y., Kim H., Yun, S-H., Leslie, J.F., Lee Y-W. (2009). Genetic Diversity and Fitness of Fusarium graminearum Populations from Rice in Korea. Applied and Environmental Microbiology, 75 (10), 3289–3295.

    Article  CAS  Google Scholar 

  • Leslie, J. F., & Summerell, B. A. (2006). The Fusarium laboratory manual. Ames: Blackwell Publishing.

    Book  Google Scholar 

  • Logrieco, A., Moretti, A., Ritieni, A., Bottalico, A., & Corda, P. (1995). Occurrence and toxigenicity of F. proliferatum from preharvest maize ear rot and associated mycotoxins in Italy. Plant Disease, 79, 727–723.

    Article  Google Scholar 

  • Möller, E. M., Bahnweg, G., Sandermann, H., & Geiger, H. H. (1992). A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected tissues. Nucleic Acids Research, 20, 6115–6116.

    Article  Google Scholar 

  • Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences U S A, 70, 3321–3323.

    Article  CAS  Google Scholar 

  • Nicholson, P., Simpson, D. R., Weston, G., Rezanoor, H. N., Lees, A. I., Parry, D. W., & Joyce, D. (1998). Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiological and Molecular Plant Pathology, 53, 17–37.

    Article  CAS  Google Scholar 

  • Obradović, A., Stanković, S., Krnjaja, V., Nikolić, A., Ignjatović-Micić, D., Stepanović, J., & Duduk, B. (2017). Trichothecene chemotype diversitz of Fusarium graminearum isolated from wheat, maize and barley in Serbia. Genetika, 49(1), 355–364.

    Article  Google Scholar 

  • Pasquali, M., et al. (2016). A European database of Fusarium graminearum and F. culmorum trichothecene genotypes. Frontiers in Microbiololgy, 7, 406.

    Google Scholar 

  • Schilling, A. G., Miedaner, T., & Geiger, H. H. (1997). Molecular variation and genetic structure in field populations of Fusarium species causing head blight in wheat. Proceedings of the fifth European Fusarium. Seminar, Szeged, Hungary. Cereal Research Communications, 25, 549–554.

    Google Scholar 

  • Stanković, S., Tančić, S., Lević, J., & Krnjaja, V. (2008). Production of deoxinivalenol by Fusarium graminearum and Fusarium culmorum isolated from wheat kernels in Serbia. Cereal Research Communications, 26, 395–396.

    Google Scholar 

  • Tok, F. M., & Arslan, M. (2016). Distribution and genetic chemotyping of Fusarium graminearum and Fusarium culmorum populations in wheat fields in the eastern Mediterranean region of Turkey. Biotechnology & Biotechnological Equipment, 30(2), 254–260.

    Article  CAS  Google Scholar 

  • Von der Ohe, C., et al. (2010). A comparison of aggressiveness and deoxynivalenol production between Canadian Fusarium graminearum isolates with 3- acetyl and 15-acetyldeoxynivalenol chemotypes in fieldgrown spring wheat. European Journal of Plant Pathology, 127, 407–417.

    Article  CAS  Google Scholar 

  • Waalwijk, C., Kastelein, P., deVries, I., Kerenyi, Z., van der Lee, T., & Hesselink, T. (2003). Major changes in Fusarium spp.in wheat in the Netherlands. Europen Journal of Plant Pathology, 109, 743–754.

    Article  CAS  Google Scholar 

  • Ward, T. J., Bielawski, J. P., Kistler, H. C., Sullivan, E., & O’Donnell, K. (2002). Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proceedings of the National Academy of Sciences (PNAS), 99(14), 9278–9283.

    Article  CAS  Google Scholar 

  • Wegulo, S. N., Bockus, W. W., Hernandez Nopsa, J., De Wolf, E. D., Eskridge, K. M., Peiris, K. H. S., & Dowell, F. E. (2011). Effects of integrating cultivar resistance and fungicide application on Fusarium head blight and deoxynivalenol in winter wheat. Plant Disease, 95, 554–560.

    Article  Google Scholar 

  • Yli-Mattila, T. (2010). Ecology and evolution of toxigenic Fusarium species in cereals in northern Europe and Asia. Journal of Plant Pathology, 92(1), 7–18.

    Google Scholar 

  • Yli-Mattila, T., & Gagkaeva, T. (2010). Molecular chemotyping of Fusarium graminearum, F. culmorum, and F. cerealis isolates from Finland and Russia. In Y. Gherbawy & K. Voigt (Eds.), Molecular identification of Fungi (pp. 159–177). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

Download references

Acknowledgements

This study was realized as a part of the TR 31066 project - Contemporary breeding of small grains for current and future needs, financed by the Ministry of Education, Science and Technological Development of the Republic of Serbia.

Funding

This study was realized as a part of the TR 31066 project - Contemporary breeding of small grains for current and future needs financed by the Ministry of Education, Science and Technological Development of Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vesna Župunski.

Ethics declarations

All authors are aware with the content of the manuscript and have agreed upon its submission to European Journal Plant Pathology.

Conflict of interest

The authors declare no conflict of interests. The manuscript has not been published in whole or in part elsewhere Eur J Plant Pathol. The manuscript is not currently being considered for publication in another journal. The manuscript is not split up into several parts to increase the quantity of submissions;

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Electronic supplementary material

ESM 1

(DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Župunski, V., Jevtić, R., Lalošević, M. et al. Diversity of trichothecene genotypes of Fusarium graminearum sensu stricto from winter wheat in Serbia. Eur J Plant Pathol 155, 461–473 (2019). https://doi.org/10.1007/s10658-019-01780-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-019-01780-5

Keywords

Navigation