Skip to main content
Log in

Fungal spores affecting vineyards in Montilla-Moriles Southern Spain

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The most common Vitis vinifera diseases are powdery mildew (Uncinula necator), grey mould (Botrytis cinerea) and downy mildew (Plasmopara viticola). Greater knowledge of the factors involved in fungus reproduction and plant infection will help to fine-tune treatment application calendars, thus cutting farmers’ costs and reducing adverse environmental effects. The main aim of this study was to investigate the relationship between airborne spore concentrations, weather-related parameters and grapevine phenology. Phenological observations and airborne spore detection were carried out during the Vitis vinifera growing period (February–August) from 2015 to 2017. Phenological data were collected weekly for four grape varieties (Pedro Ximénez, Verdejo, Muscat à petit grains and Chardonnay). Airborne fungal spores were monitored using one Hirst-type volumetric spore trap, following the standard protocol developed by the Spanish Aerobiology Network (REA) and the European Aeroallergen Society (EAS), and 4 Passive Spore Traps (PST), following the protocol proposed by Kelly et al. (Phytopathology, 105, 905–916, 2015). During this study, U. necator was the most common, followed by B. cinerea and P. viticola. A significant correlation was found between the all PSTs weekly spore concentrations and the Hirst sampler but the seasonal spore integral was always higher for the Hirst-type sampler than for PSTs. Airborne U. necator spore concentrations were higher prior to blooming, and correlated with average temperature and rainfall. B. cinerea recorded the highest concentrations during leaf development, inflorescence emergence and flowering; airborne spore concentrations were correlated with both dew point and daily average temperature. P. viticola presented lower concentration but it was most frequently recorded spore during the stages prior to blooming, and displayed stronger correlations with humidity, dew point and average temperature. Weather conditions over the study period in the Montilla-Moriles Protected Designation of Origin (PDO) area probably gave rise to spore concentrations lower than those reported for vineyards elsewhere in Spain, but higher than those recorded locally in areas where not associated with vineyards. The Hirst-type sampler yielded spore data representative of the whole study area. Knowledge of the factors influencing fungal spore concentration will help to fine-tune treatment calendars, and thus reduce the economic and environmental effects of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Álvarez, M., Moreno, I. M., Jos, Á. M., Cameán, A. M., & González, A. G. (2007). Study of mineral profile of Montilla-Moriles “fino” wines using inductively coupled plasma atomic emission spectrometry methods. Journal of Food Composition and Analysis, 20, 391–395.

    Article  CAS  Google Scholar 

  • Braak, C. J. F. T. (1986). Canonical Correspondence Analysis: A New Eigenvector Technique for Multivariate Direct Gradient Analysis. Ecology, 67, 1167–1179. https://doi.org/10.2307/1938672.

    Article  Google Scholar 

  • Bugiani, R., Govoni, P., Bottazzi, R., Giannico, P., Montini, B., & Pozza, M. (1995). Monitoring airborne concentrations of sporangia of Phytophthora infestans in relation to tomato late blight in Emilia Romagna, Italy. Aerobiologia, 11, 41–46.

    Article  Google Scholar 

  • Campbell, P., Bendek, C., & Latorre, B. A. (2007). Risk of powdery mildew (Erysiphe necator) outbreaks on grapevines in relation to cluster development. Cienc. E Investig. Agrar., 34, 5–11.

    Google Scholar 

  • Carisse, O., Savary, S., & Willocquet, L. (2008). Spatiotemporal relationships between disease development and airborne inoculum in unmanaged and managed Botrytis leaf blight epidemics. Phytopathology, 98, 38–44.

    Article  CAS  PubMed  Google Scholar 

  • Coombe, B. G. (1995). Growth Stages of the Grapevine: Adoption of a system for identifying grapevine growth stages. Australian Journal of Grape and Wine Research, 1, 104–110.

  • Cortesi, P., Bisiach, M., Ricciolini, M., & Gadoury, D. M. (1997). Cleistothecia of Uncinula necator—an additional source of inoculum in Italian vineyards. Plant Disease, 81, 922–926.

    Article  PubMed  Google Scholar 

  • Cunha, M., Ribeiro, H., & Abreu, I. (2016). Pollen-based predictive modelling of wine production: application to an arid region. European Journal of Agronomy, 73, 42–54. https://doi.org/10.1016/j.eja.2015.10.008.

    Article  Google Scholar 

  • Diaz, M. R., Iglesias, I., & Jato, V. (1998). Seasonal variation of airborne fungal spore concentrations in a vineyard of North-West Spain. Aerobiologia, 14, 221–227. https://doi.org/10.1007/BF02694210.

    Article  Google Scholar 

  • Dixon, P. (2003). VEGAN, a package of R functions for community ecology. Journal of Vegetation Science, 14, 927–930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x.

    Article  Google Scholar 

  • Fernández-Gonzalez, M., Rodríguez-Rajo, F. J., Jato, V., & Aira, M. J. (2009). Incidence of fungals in a vineyard of the denomination of origin ribeiro [Ourense-North-Western Spain]. Annals of Agricultural and Environmental Medicine, 16, 263–271.

    PubMed  Google Scholar 

  • Fernández-González, M., Escuredo, O., Rodríguez-Rajo, F. J., Aira, M. J., & Jato, V. (2011). Prediction of grape production by grapevine cultivar Godello in north-west Spain. The Journal of Agricultural Science, 149, 725–736. https://doi.org/10.1017/S0021859611000244.

    Article  Google Scholar 

  • Fernandez-Gonzalez, M., Rodriguez-Rajo F. J., Jato, V., Aira M., J., Ribeiro, H., Oliveira, M., Abreu, I., (2012). Forecasting ARIMA models for atmospheric vineyard pathogens in Galicia and Northern Portugal: Botrytis cinerea spores. Annals of Agricultural and Environmental Medicine 19.

  • Fernández-González, M., Rodríguez-Rajo, F. J., Escuredo, O., & Aira, M. J. (2013). Optimization of integrated pest management for powdery mildew (<span class="italic">Unincula necator</span>) control in a vineyard based on a combination of phenological, meteorological and aerobiological data [WWW Document]. The Journal of Agricultural Science, 151, 648–658. https://doi.org/10.1017/S0021859612000743.

    Article  CAS  Google Scholar 

  • Gadoury, D.M., Seem, R.C., Pearson, R.C., Wilcox, W.F., Dunst, R.M. (2007). Effects of Powdery Mildew on Vine Growth, yield, and Quality of Concord Grapes [WWW Document]. https://doi.org/10.1094/PDIS.2001.85.2.137

  • Galán, C., González, P. C., Teno, P. A., & Vilches, E. D. (2007). Spanish Aerobiology Network (REA): management and quality manual. Córdoba: Servicio de Publicaciones, Universidad de Córdoba.

  • Galán, C., Smith, M., Thibaudon, M., Frenguelli, G., Oteros, J., Gehrig, R., Berger, U., Clot, B., Brandao, R., & Group, E. Q. W. (2014). Pollen monitoring: minimum requirements and reproducibility of analysis. Aerobiologia, 30, 385–395. https://doi.org/10.1007/s10453-014-9335-5.

    Article  Google Scholar 

  • Galan, C., Ariatti, A., Bonini, M., Clot, B., Crouzy, B., Dahl, A., Fernandez-González, D., Frenguelli, G., Gehrig, R., Isard, S., Levetin, E., Li, D. W., Mandrioli, P., Rogers, C. A., Thibaudon, M., Sauliene, I., Skjøth, C., Smith, M., & Sofiev, M. (2017). Recommended terminology for aerobiological studies. Aerobiologia, 33, 293–295.

    Article  Google Scholar 

  • Gee, L. M., Stummer, B. E., Gadoury, D. M., Biggins, L. T., & Scott, E. S. (2000). Maturation of cleistothecia of Uncinula necator (powdery mildew) and release of ascospores in southern Australia. Australian Journal of Grape and Wine Research, 6, 13–20.

    Article  Google Scholar 

  • Goidanich, G., Casarini, B., & Foschi, S. (1957). Lotta antiperonosporica e calendario d’incubazione. G. Agric., 13, 11–14.

    Google Scholar 

  • Grove, G.G. (2007). Perennation of Uncinula necator in Vineyards of Eastern Washington [WWW Document]. https://doi.org/10.1094/PDIS.2004.88.3.242

  • Hirst, J.M., (1952). An Automatic Volumetric Spore Trap. The Annals of Applied Biology 39, 257–265. https://doi.org/10.1111/j.1744-7348.1952.tb00904.x.

    Article  Google Scholar 

  • Holb, I. J., & Füzi, I. (2016). Monitoring of ascospore density of Erysiphe necator in the air in relation to weather factors and powdery mildew development. European Journal of Plant Pathology, 144, 751–762. https://doi.org/10.1007/s10658-015-0823-4.

    Article  Google Scholar 

  • Hothorn, T., Hornik, K., & Zeileis, A. (2012). Unbiased Recursive Partitioning: A Conditional Inference Framework. Journal of Computational and Graphical Statistics. https://doi.org/10.1198/106186006X133933.

  • Kelly, H. Y., Dufault, N. S., Walker, D. R., Isard, S. A., Schneider, R. W., Giesler, L. J., Wright, D. L., Marois, J. J., & Hartman, G. L. (2015). From select agent to an established pathogen: the response to Phakopsora pachyrhizi (soybean rust) in North America. Phytopathology, 105, 905–916.

    Article  PubMed  Google Scholar 

  • Kiefer, B., Riemann, M., Büche, C., Kassemeyer, H.-H., & Nick, P. (2002). The host guides morphogenesis and stomatal targeting in the grapevine pathogen Plasmopara viticola. Planta, 215, 387–393.

    Article  CAS  PubMed  Google Scholar 

  • Lorenz, D. H., Eichhorn, K. W., Bleiholder, H., Klose, R., Meier, U., & Weber, E. (1994). Phänologische Entwicklungsstadien der Weinrebe (Vitis vinifera L. ssp. vinifera). Codierung und Beschreibung nach der erweiterten BBCH-Skala. Wein-Wiss, 49, 66–70.

    Google Scholar 

  • Mariani, L., Failla, O., Monte, G., Facchinetti, D. (2007). IPHEN: a model for real time production of grapevine phenological maps, in: Climate and Viticulture. Consejero de Agricultura y Alimentation de Gobierno del Aragona, pp. 272–278.

  • Meier, U. (1997). Growth stages of mono- and dicotyledonous plants. Blackwell Wissenschafts-Verlag.

  • Moyer, M. M., Gadoury, D. M., Wilcox, W. F., & Seem, R. C. (2014). Release of Erysiphe necator Ascospores and Impact of Early Season Disease Pressure on Vitis vinifera Fruit Infection. Am. J. Enol. Vitic. ajev., 2014, 13111–13324. https://doi.org/10.5344/ajev.2014.13111.

    Article  Google Scholar 

  • OIV. (2015). Compendio de métodos internacionales de análisis de los vinos y mostos, OIV. ed. Paris.

  • Oliveira, M., Guerner-Moreira, J., Mesquita, M. M., & Abreu, I. (2009). Important phytopathogenic airborne fungal spores in a rural area: incidence of Botrytis cinerea and Oidium spp. Annals of Agricultural and Environmental Medicine, 16, 197–204.

    PubMed  Google Scholar 

  • Ortega-Farías, S. O., Lozano, P., Moreno, Y., & León, L. (2002). Desarrollo de modelos predictivos de fenología y evolución de madurez en vid para vino cv. Cabernet Sauvignon y Chardonnay. Agric. Téc., 62, 27–37.

    Google Scholar 

  • Pedro Júnior, M.J., Sentelhas, P.C. (2003). Clima e produção. Uva Tecnol. Produção Pós-Colheita Merc. Porto Alegre Cinco Cont. 63–107.

  • R Development Core Team. (2008). R: A language and environment for statistical computing R Foundation for Statistical Computing [WWW Document]. URL http://www.r-project.org./ (Accessed 17 July 2017).

  • Rodríguez-Rajo, F. J., Jato, V., Fernández-González, M., & Aira, M. J. (2010). The use of aerobiological methods for forecasting Botrytis spore concentrations in a vineyard. Grana, 49, 56–65. https://doi.org/10.1080/00173130903472393.

    Article  Google Scholar 

  • Rossi, V., Caffi, T., Legler, S.E., 2010. Dynamics of Ascospore Maturation and Discharge in Erysiphe necator, the Causal Agent of Grape Powdery Mildew [WWW document]. https://doi.org/10.1094/PHYTO-05-10-0149

  • Rossi, V., Caffi, T., & Gobbin, D. (2013). Contribution of molecular studies to botanical epidemiology and disease modelling: grapevine downy mildew as a case-study. European Journal of Plant Pathology, 135, 641–654.

    Article  Google Scholar 

  • Sadyś, M., Strzelczak, A., Grinn-Gofroń, A., & Kennedy, R. (2015). Application of redundancy analysis for aerobiological data. International Journal of Biometeorology, 59, 25–36. https://doi.org/10.1007/s00484-014-0818-4.

    Article  PubMed  Google Scholar 

  • Sousa, L., Camacho, I. C., Grinn-Gofroń, A., & Camacho, R. (2016). Monitoring of anamorphic fungal spores in Madeira region (Portugal), 2003–2008. Aerobiologia, 32, 303–315. https://doi.org/10.1007/s10453-015-9400-8.

    Article  Google Scholar 

  • West, J. S., & Kimber, R. B. E. (2015). Innovations in air sampling to detect plant pathogens. The Annals of Applied Biology, 166, 4–17. https://doi.org/10.1111/aab.12191.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the proyect “CGL2014-54731-R- FENOMED-Estudio de tendencias fenológicas en plantas del Mediterráneo Occidental y su relación con el cambio climático”. Ministerio de Economía y Competitividad. Spain Goverment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Martínez-Bracero.

Ethics declarations

All authors in this paper have been reported about it and about the send to the present Journal; they also have done their consent.

Conflicts of interest

This study do not have are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Bracero, M., Alcázar, P., Velasco-Jiménez, M.J. et al. Fungal spores affecting vineyards in Montilla-Moriles Southern Spain. Eur J Plant Pathol 153, 1–13 (2019). https://doi.org/10.1007/s10658-018-1532-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-018-1532-6

Keywords

Navigation