Skip to main content
Log in

Relationships among Brazilian and worldwide isolates of Fusarium oxysporum f. sp. lactucae race 1 inferred from ribosomal intergenic spacer (IGS-rDNA) region and EF-1α gene sequences

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Fusarium wilt, caused by Fusarium oxysporum f. sp. lactucae (FOLac), is amongst the main diseases affecting lettuce in subtropical regions. Although nationwide surveys indicated the exclusive presence of FOLac race 1 in Brazil, no detailed studies are available providing molecular evidences if these isolates were introduced into the country via contaminated seeds or if they are endemic populations. The translation elongation factor 1α (EF-1α) gene and rDNA intergenic spacer (IGS-rDNA) region represent the most comprehensive databases for comparative analyses of Fusarium isolates. Our aim was to assess the genetic relationships of 23 Brazilian FOLac race 1 isolates with a collection of FOLac isolates of worldwide origin, using the information from these genomic regions. A consistent single-cluster pattern was observed for FOLac race 1 isolates from Brazil, California-USA, Arizona-USA, Japan, Italy, as well as the novel FOLac race 4 isolates from the Netherlands based upon the EF-1α (604 nucleotides) and the IGS-rDNA (1859 nucleotides) sequences. Our analysis (based upon six single nucleotide polymorphisms identified only in the IGS-rDNA sequence) allowed the identification of intra-race 1 variation with the discrimination of four haplotypes. Isolates from Brazil, Italy, and a subset from the USA were classified into a single haplotype. The low diversity levels and the presence of only a single haplotype across the entire country are strong indications that Brazilian FOLac race 1 isolates are result of recent introduction event(s). This fast and widespread distribution of FOLac race 1 in Brazil has occurred more likely via importation and planting of contaminated seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abo, K., Klein, K. K., Edel-Hermann, V., Gautheron, N., Traore, D., & Steinberg, C. (2005). High genetic diversity among strains of Fusarium oxysporum f. sp. vasinfectum from cotton in Ivory Coast. Phytopathology, 95(12), 1391–1396.

    Article  PubMed  CAS  Google Scholar 

  • Amatulli, M. T., Spadaro, D., Gullino, M. L., & Garibaldi, A. (2010). Molecular identification of Fusarium spp. associated with bakanae disease of rice in Italy and assessment of their pathogenicity. Plant Pathology, 59(5), 839–844.

    Article  CAS  Google Scholar 

  • Anderson, J. B., & Stasovski, E. (1992). Molecular phylogeny of northern hemisphere species of Armillaria. Mycologia, 84, 505–516.

    Article  CAS  Google Scholar 

  • Baayen, R. P., O'Donnell, K., Bonants, P. J., Cigelnik, E., Kroon, L. P., Roebroeck, E. J., & Waalwijk, C. (2000). Gene genealogies and AFLP analyses in the Fusarium oxysporum complex identify monophyletic and nonmonophyletic formae speciales causing wilt and rot disease. Phytopathology, 90(8), 891–900.

    Article  PubMed  CAS  Google Scholar 

  • Bogale, M., Wingfield, B. D., Wingfield, M. J., & Steenkamp, E. T. (2006). Characterization of Fusarium oxysporum isolates from Ethiopia using AFLP, SSR and DNA sequence analyses. Fungal Diversity, 23(6), 51.

    Google Scholar 

  • Boiteux, L. S., Fonseca, M. E. N., & Simon, P. W. (1999). Effects of plant tissue and DNA purification method on randomly amplified polymorphic DNA-based genetic fingerprinting analysis in carrot. Journal of the American Society for Horticultural Science, 124(1), 32–38.

    CAS  Google Scholar 

  • Cabral, C. S., Brunelli, K. R., Costa, H., Fonseca, M. E. N., Boiteux, L. S., & Reis, A. (2014). Identification of Fusarium oxysporum f. sp. lactucae race 1 as the causal agent of lettuce wilt in Brazil. Tropical Plant Pathology, 39(3), 197–202.

    Article  Google Scholar 

  • Canizares, M. C., Gomez-Lama, C., García-Pedrajas, M. D., & Perez-Artes, E. (2015). Study of phylogenetic relationships among Fusarium oxysporum f. sp. dianthi isolates: Confirmation of intrarace diversity and development of a practical tool for simple population analyses. Plant Disease, 99(6), 780–787.

    Article  Google Scholar 

  • Castellani, A. (1939). Viability of some pathogenic fungi in distilled water. The Journal of Tropical Medicine and Hygiene, 24, 270–276.

    Google Scholar 

  • Correll, J. C. (1991). The relationship between formae speciales, races, and vegetative compatibility groups in Fusarium oxysporum. Phytopathology, 81(9), 1061–1064.

    Google Scholar 

  • Davis R. M., Subbarao K.V., Raid R. N., & Kurtz E. A. (1997). Compendium of lettuce diseases. American Phytopathological society press, St. Paul, p 79.

  • Davis, R. M., Colyer, P. D., Rothrock, C. S., & Kochman, J. K. (2006). Fusarium wilt of cotton: Population diversity and implications for management. Plant Disease, 90(6), 692–703.

    Article  Google Scholar 

  • Dingra, O. D., & Sinclair, J. B. (1995). Basic plant pathology methods (2nd ed.). London: Lewis Publishers.

    Google Scholar 

  • Dissanayake, M. L. M. C., Kashima, R., Tanaka, S., & Ito, S. I. (2009). Genetic diversity and pathogenicity of Fusarium oxysporum isolated from wilted welsh onion in Japan. Journal of General Plant Pathology, 75(2), 125–130.

    Article  Google Scholar 

  • Engelbrecht, C. J. B., Harrington, T. C., Alfenas, A. C., & Suarez, C. (2007). Genetic variation in populations of the cacao wilt pathogen, Ceratocystis cacaofunesta. Plant Pathology, 56(6), 923–933.

    Article  CAS  Google Scholar 

  • Enya, J., Togawa, M., Takeuchi, T., Yoshida, S., Tsushima, S., Arie, T., & Sakai, T. (2008). Biological and phylogenetic characterization of Fusarium oxysporum complex, which causes yellows on Brassica spp., and proposal of F. oxysporum f. sp. rapae, a novel forma specialis pathogenic on B. rapa in Japan. Phytopathology, 98(4), 475–483.

    Article  PubMed  CAS  Google Scholar 

  • Fujinaga, M., Ogiso, H., Tsuchiya, N., & Saito, H. (2001). Physiological specialization of Fusarium oxysporum f. sp. lactucae, a causal organism of fusarium root rot of crisp head lettuce in Japan. Journal of General Plant Pathology, 67(3), 205–206.

    Article  Google Scholar 

  • Fujinaga, M., Ogiso, H., Tuchiya, N., Saito, H., Yamanaka, S., Nozue, M., & Kojima, M. (2003). Race 3, a new race of Fusarium oxysporum f. sp. lactucae determined by a differential system with commercial cultivars. Journal of General Plant Pathology, 69(1), 23–28.

    Article  Google Scholar 

  • Fujinaga, M., Ogiso, H., Shinohara, H., Tsushima, S., Nishimura, N., Togawa, M., Saito, H., & Nozue, M. (2005). Phylogenetic relationships between the lettuce root rot pathogen Fusarium oxysporum f. sp. lactucae races 1, 2, and 3 based on the sequence of the intergenic spacer region of its ribosomal DNA. Journal of General Plant Pathology, 71(6), 402–407.

    Article  CAS  Google Scholar 

  • Garibaldi, A., Gilardi, G., & Gullino, M. L. (2002). First report of Fusarium oxysporum on lettuce in Europe. Plant Disease, 86(9), 1052–1052.

    Article  Google Scholar 

  • Garibaldi, A., Gilardi, G., & Gullino, M. L. (2004a). Seed transmission of Fusarium oxysporum f. sp. lactucae. Phytoparasitica, 32(1), 61–65.

    Article  Google Scholar 

  • Garibaldi, A., Gilardi, G., & Gullino, M. L. (2004b). Varietal resistance of lettuce to Fusarium oxysporum f. sp. lactucae. Crop Protection, 23(9), 845–851.

    Article  Google Scholar 

  • Gilardi, G., Franco, O. S., van Rijswick, P., Ortu, G., Gullino, M. L., & Garibaldi, A. (2017a). A new race of Fusarium oxysporum f. sp. lactucae. Plant Pathology, 66, 677–688.

    Article  Google Scholar 

  • Gilardi, G., Pons, C., Gard, B., Franco-Ortega, S., & Gullino, M. L. (2017b). Presence of fusarium wilt, incited by Fusarium oxysporumf. sp. lactucae, on lettuce in France. Plant Disease, 101, 1053.

    Article  Google Scholar 

  • Gullino M.L., Gilardi G., & Garibaldi A. (2014). Seed-borne fungal pathogens of leafy vegetable crops. In: Gullino M., & Munkvold G. (eds,) Global Perspectives on the Health of Seeds and Plant Propagation Material. Plant Pathology in the 21st Century, vol 6. Springer, Dordrecht.

  • Harrington, T. C., Steimel, J., Workneh, F., & Yang, X. B. (2003). Characterization and distribution of two races of Phialophora gregata in the north-central United States. Phytopathology, 93(7), 901–912.

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa, M., Kishino, H., & Yano, T. A. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22(2), 160–174.

    Article  PubMed  CAS  Google Scholar 

  • Hirano, Y., & Arie, T. (2009). Variation and phylogeny of Fusarium oxysporum isolates based on nucleotide sequences of polygalacturonase genes. Microbes and Environments, 24(2), 113–120.

    Article  PubMed  Google Scholar 

  • Huang, J. H. (1998). Wilt of lettuce caused by Fusarium oxysporum in Taiwan. Plant Pathology Bullettin, 7, 150–153.

    Google Scholar 

  • Hubbard, J. C., & Gerik, J. S. (1993). A new wilt disease of lettuce incited by Fusarium oxysporum f. sp. lactucum forma specialis nov. Plant Disease, 77(7), 750–754.

    Article  Google Scholar 

  • Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17(8), 754–755.

    Article  PubMed  CAS  Google Scholar 

  • Instituto Brasileiro de Geografia e Estatística (2017) Sidra: sistema IBGE de recuperação automática. Rio de Janeiro. Available in: http://www.sidra.ibge.gov.br. Accessed 18 Oct 2017.

  • Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kawabe, M., Kobayashi, Y., Okada, G., Yamaguchi, I., Teraoka, T., & Arie, T. (2005). Three evolutionary lineages of tomato wilt pathogen, Fusarium oxysporum f. sp. lycopersici, based on sequences of IGS, MAT1, and pg1, are each composed of isolates of a single mating type and a single or closely related vegetative compatibility group. Journal of General Plant Pathology, 71(4), 263–272.

    Article  CAS  Google Scholar 

  • Librado, P., & Rozas, J. (2009). DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451–1452.

    Article  PubMed  CAS  Google Scholar 

  • Lievens, B., Rep, M., & Thomma, B. P. (2008). Recent developments in the molecular discrimination of formae speciales of Fusarium oxysporum. Pest Management Science, 64(8), 781–788.

    Article  PubMed  CAS  Google Scholar 

  • Lin, Y. H., Lai, P. J., Chang, T. H., Wan, Y. L., Huang, J. W., Huang, J. H., & Chang, P. F. L. (2014). Genetic diversity and identification of race 3 of Fusarium oxysporum f. sp. lactucae in Taiwan. European Journal of Plant Pathology, 140(4), 721–733.

    Article  CAS  Google Scholar 

  • Llorens, A., Hinojo, M. J., Mateo, R., Medina, A., Valle-Algarra, F. M., Gonzalez-Jaen, M. T., & Jimenez, M. (2006). Variability and characterization of mycotoxin-producing Fusarium spp. isolates by PCR-RFLP analysis of the IGS-rDNA region. Antonie Van Leeuwenhoek, 89(3), 465–478.

    Article  PubMed  CAS  Google Scholar 

  • Ma, L. J., Van Der Does, H. C., Borkovich, K. A., Coleman, J. J., Daboussi, M. J., Di Pietro, A., et al. (2010). Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 464(7287), 367–373.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malbrán, I., Mourelos, C. A., Mitidieri, M. S., Ronco, B. L., & Lori, G. A. (2014). Fusarium wilt of lettuce caused by Fusarium oxysporum f. sp. lactucae in Argentina. Plant Disease, 98, 1281.

    Article  Google Scholar 

  • Matuo, T., & Motohashi, S. (1967). On Fusarium oxysporum f. sp. lactucae n. f. Causing root of lettuce. Transactions of the Mycological Society of Japan, 8, 13–15.

    Google Scholar 

  • Mbofung, G. C. Y., & Pryor, B. M. (2010). A PCR-based assay for detection of Fusarium oxysporum f. sp. lactucae in lettuce seed. Plant Disease, 94(7), 860–866.

    Article  CAS  Google Scholar 

  • Mbofung, G. Y., Hong, S. G., & Pryor, B. M. (2007). Phylogeny of Fusarium oxysporum f. sp. lactucae inferred from mitochondrial small subunit, elongation factor 1-α, and nuclear ribosomal intergenic spacer sequence data. Phytopathology, 97(1), 87–98.

    Article  PubMed  CAS  Google Scholar 

  • McCreight, J. D., Matheron, M. E., Tickes, B. R., & Platts, B. (2005). Fusarium wilt race 1 on lettuce. Hortscience, 40(3), 529–531.

    Google Scholar 

  • Millani, M. J. (1999). Occurrence of fusarium wilt of lettuce in Shahre-ray, Varamin and Karaj areas. Iranian Journal of Plant Pathology, 35, 44–45.

    Google Scholar 

  • O’Donnell, K., Gueidan, C., Sink, S., Johnston, P. R., Crous, P. W., Glenn, A., et al. (2009). A two-locus DNA sequence database for typing plant and human pathogens within the Fusarium oxysporum species complex. Fungal Genetics and Biology, 46(12), 936–948.

    Article  PubMed  CAS  Google Scholar 

  • O'Donnell, K., Cigelnik, E., & Nirenberg, H. I. (1998). Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia, 90, 465–493.

    Article  CAS  Google Scholar 

  • Pasquali, M., Dematheis, F., Gullino, M. L., & Garibaldi, A. (2007). Identification of race 1 of Fusarium oxysporum f. sp. lactucae on lettuce by inter-retrotransposon sequence-characterized amplified region technique. Phytopathology, 97(8), 987–996.

    Article  PubMed  CAS  Google Scholar 

  • Scott, J. C., Kirkpatrick, S. C., & Gordon, T. R. (2010). Variation in susceptibility of lettuce cultivars to fusarium wilt caused by Fusarium oxysporum f. sp. lactucae. Plant Pathology, 59(1), 139–146.

    Article  Google Scholar 

  • Srinivasan, K., Gilardi, G., Spadaro, D., Garibaldi, A., & Gullino, M. L. (2011). Molecular characterization through IGS sequencing of formae speciales of Fusarium oxysporum pathogenic on lamb’s lettuce. Phytopathologia Mediterranea, 49(3), 309–320.

    Google Scholar 

  • Srinivasan, K., Spadaro, D., Poli, A., Gilardi, G., Gullino, M. L., & Garibaldi, A. (2012). Genetic diversity and pathogenicity of Fusarium oxysporum isolated from wilted rocket plants in Italy. Phytoparasitica, 40(2), 157–170.

    Article  Google Scholar 

  • Swofford, D. L. (2003). PAUP. Phylogenetic Analysis Using Parsimony (and Other Methods). Version 4. Sinauer Associates, Sunderland.

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tavaré, S. (1986). Some probabilistic and statistical problems in the analysis of DNA sequences. In R. M. Miura (Ed.), Lectures on mathematics in the life sciences (pp-57-86). Providence: American Mathematical Society.

    Google Scholar 

  • Thatcher, L. F., Gardiner, D. M., Kazan, K., & Manners, J. M. (2012). A highly conserved effector in Fusarium oxysporum is required for full virulence on Arabidopsis. Molecular Plant-Microbe Interactions, 25(2), 180–190.

    Article  PubMed  CAS  Google Scholar 

  • Van Der Does, H. C., Lievens, B., Claes, L., Houterman, P. M., Cornelissen, B. J., & Rep, M. (2008). The presence of a virulence locus discriminates Fusarium oxysporum isolates causing tomato wilt from other isolates. Environmental Microbiology, 10(6), 1475–1485.

    Article  PubMed  CAS  Google Scholar 

  • Ventura, J. A., & Costa, H. (2008). Fusarium wilt caused by Fusarium oxysporum on lettuce in Espirito Santo, Brazil. Plant Disease, 92(6), 976.

    Article  Google Scholar 

  • White, T. J., Bruns, T. Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: a guide to methods and amplifications (pp. 315–322). San Diego: Academic Press.

  • Wulff, E. G., Sørensen, J. L., Lübeck, M., Nielsen, K. F., Thrane, U., & Torp, J. (2010). Fusarium spp. associated with rice Bakanae: Ecology, genetic diversity, pathogenicity and toxigenicity. Environmental Microbiology, 12(3), 649–657.

    Article  PubMed  Google Scholar 

  • Yamauchi, N., Shimazu, J., Satou, M., Horiuchi, S., & Shirakawa, T. (2004). Physiological races and vegetative compatibility groups of butterhead lettuce isolates of Fusarium oxysporum f. sp. lactucae in Japan. Journal of General Plant Pathology, 70(6), 308–313.

    Article  Google Scholar 

Download references

Acknowledgments

Cléia S. Cabral was supported by fellowship from CAPES. Maria Esther de N. Fonseca and Leonardo S. Boiteux were supported by fellowships from the Brazilian National Research Council (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ailton Reis.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest.

Research involving human participants and/or animals

Not applicable.

Informed consent

All authors have reviewed the manuscript and approved its submission to European Journal of Plant Pathology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabral, C.S., de N. Fonseca, M.E., Brunelli, K.R. et al. Relationships among Brazilian and worldwide isolates of Fusarium oxysporum f. sp. lactucae race 1 inferred from ribosomal intergenic spacer (IGS-rDNA) region and EF-1α gene sequences. Eur J Plant Pathol 152, 81–94 (2018). https://doi.org/10.1007/s10658-018-1453-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-018-1453-4

Keywords

Navigation