Skip to main content
Log in

Temperature and plant age drive downy mildew disease epidemics on oilseed Brassica napus and B. juncea

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Studies were undertaken on the effects of temperature (14/10 °C and 22/17 °C day/night) and plant age (15, 23, 31 and 40 day-old-plants) on the severity of downy mildew (Hyaloperonospora parasitica) on oilseed Brassica cultivars (temperature: Brassica juncea Montara, B. napus Atomic, ATR-Hyden, Hyola 432, Hyola 450 TT, Thunder TT; plant age: B. juncea Dune, B. napus Surpass 402 and Hyola 450 TT). For temperature studies, there were significant (P < 0.001) effects of temperature, cultivar, and cultivar x temperature interaction. On cotyledons of susceptible cultivars (B. napus Hyola 450 TT and Thunder TT), plants were symptomatic at 22/17 °C by 48 h post inoculation (hpi) and with abundant sporulation evident by 72 hpi, and with all cotyledons of B. napus Thunder TT collapsed by 7 days post inoculation (dpi). However, at 14/10 °C, there were no symptoms on the same cultivars until 5 dpi, and sporulation only observed at 7 dpi. Percent disease index values (DI%) at 22/17 °C of B. juncea Montara and B. napus ATR-Hyden, Hyola 432, Atomic, Hyola 450 TT and Thunder TT were 4.5, 49.0, 51.4, 65.8, 86.3 and 96.0, respectively, with all except B. juncea Montara having significantly lower (P < 0.001) disease at 14/10 °C with DI% values of 2.8, 30.4, 27.9, 31.1, 44.4 and 76.4, respectively. For plant age studies, there were significant (P < 0.001) effects of plant age, cultivar, and cultivar x plant age interaction. DI% was significantly higher at 15 compared to 40 day-old-plants (dop) across all cultivars. B. juncea Dune showed greatest resistance, particularly on 40 dop, with DI% values of 25.8, 24.6, 22.9 and 7.5, for 15, 23, 31 and 40 dop, respectively. B. napus Surpass 402 showed high susceptibility on cotyledons of 15 dop but moderate resistance on leaves of other ages, with DI% values of 59.0, 31.2, 27.1 and 26.2 for 15, 23, 31 and 40 dop, respectively. B. napus Hyola 450 TT showed very high susceptibility at the cotyledon stage on 15 dop, but some resistance on 23 dop and more so on 31 and 40 dop, with DI% values of 84.0, 41.2, 35.4 and 32.9 for 15, 23, 31 and 40 dop, respectively. Together, these findings explain for the first time why development of downy mildew epidemics on susceptible cultivars occurs early in the growing season when warmer seasonal temperatures in autumn coincide with presence of seedlings; in contrast to later in the growing season on less susceptible older plants coinciding with cooler and less favourable winter temperatures. Increasing maximum and minimum temperatures associated with climate change have likely fostered the increased severity of downy mildew over the past 15 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Achar, P. (1998). Effects of temperature on germination of Peronospora parasitica conidia and infection of Brassica oleracea. Journal of Phytopathology, 146, 137–141.

    Article  Google Scholar 

  • Bachofer, M. (2004). Molekularbiologische Populationsstudien an Plasmopara halstedii, dem Falschen Mehltau der Sonnenblume (Doctoral dissertation, M. Bachofer). Stuttgart: University of Hohenheim.

  • Barbetti, M. J., & Khangura, R. (2000). Fungal diseases of canola in Western Australia. Agriculture Western Australia Bulletin, 4406, 15.

  • Barbetti, M. J., Banga, S. S., & Salisbury, P. A. (2012). Challenges for crop production and management from pathogen biodiversity and diseases under current and future climate scenarios - case study with oilseed Brassicas. Field Crops Research, 127, 225–240.

    Article  Google Scholar 

  • Barbetti, M. J., Banga, S. K., Fu, T. D., Li, Y. C., Singh, D., Liu, S. Y., Ge, X. T., & Banga, S. S. (2014). Comparative genotype reactions to Sclerotinia sclerotiorum within breeding populations of Brassica napus and B. juncea from India and China. Euphytica, 197, 47–59.

    Article  Google Scholar 

  • Bonnet, A., & Blancard, D. (1987). Resistance of radish (Raphanus sativus L.) to downy mildew Peronospora parasitica. Cruziferae Newsletter, 12, 98–99.

    Google Scholar 

  • Bureau of Meteorology. (2014). State of the climate, 2014. Source Available at: https://www.climatechangeinaustralia.gov.au/en/climate-campus/australian-climate-change/australian-trends/.

  • Cenis, J. L. (1992). Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Research, 20, 2380.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Channon, A. G. (1981). Downy mildew of Brassicas. In D. M. Spencer (Ed.), The downy mildews (pp. 321–339). London: Academic Press.

  • Chu, H. T. (1935). Notes on the penetration phenomena and haustorium formation in Peronospora brassicae GÄUM. Japanese Journal of Phytopathology, 5, 150–157.

  • Coelho, P. S., & Monteiro, A. A. (2003). Inheritance of downy mildew resistance in mature broccoli plants. Euphytica, 131, 65–69.

    Article  Google Scholar 

  • Coelho, P., Bahcevandziev, K., Valerio, L., Monteiro, A., Leckie, D., Astley, D., Crute, I. R., & Boukema, I. (1998). The relationship between cotyledon and adult plant resistance to downy mildew (Peronospora parasitica) in Brassica oleracea. Acta Horticulturae, 459, 335–342.

    Article  Google Scholar 

  • Coelho, P. S., Valério, L., & Monteiro, A. A. (2009). Leaf position, leaf age and plant age affect the expression of downy mildew resistance in Brassica oleracea. European Journal of Plant Pathology, 125, 179–188.

    Article  Google Scholar 

  • Coelho, P. S., Vicente, J. G., Monteiro, A. A., & Holub, E. B. (2012). Pathotypic diversity of Hyaloperonospora brassicae collected from Brassica oleracea. European Journal of Plant Pathology, 134, 763–771.

    Article  Google Scholar 

  • Dickson, M. H., & Petzoldt, R. (1993). Plant age and isolate source affect expression of downy mildew resistance in broccoli. Hortscience, 28, 730–731.

    Google Scholar 

  • Elliott, V. L., Norton, R. M., Khangura, R. K., Salisbury, P. A., & Marcroft, S. J. (2015). Incidence and severity of blackleg caused by Leptosphaeria spp. in juncea canola (Brassica juncea L.) in Australia. Australas. Australasian Plant Pathology, 44, 149–159.

    Article  Google Scholar 

  • Felton, M. W., & Walker, J. C. (1946). Environmental factors affecting downy mildew of cabbage. Journal of Agricultural Research, 72, 69–81.

    Google Scholar 

  • Garg, H., Sivasithamparam, K., Banga, S. S., & Barbetti, M. J. (2008). Cotyledon assay as a rapid and reliable method of screening for resistance against Sclerotinia sclerotiorum in Brassica napus genotypes. Australasian Plant Pathology, 37, 106–111.

    Article  Google Scholar 

  • Ge, X. T., Li, H., Han, S., Sivasithamparam, K., & Barbetti, M. J. (2008). Evaluation of Australian Brassica napus genotypes for resistance to the downy mildew pathogen, Hyaloperonospora parasitica. Crop and Pasture Science, 59, 1030–1034.

    Article  Google Scholar 

  • Göker, M., Riethmüller, A., Voglmayr, H., Weiss, M., & Oberwinkler, F. (2004). Phylogeny of Hyaloperonospora based on nuclear ribosomal internal transcribed spacer sequences. Mycological Progress, 3, 83–94.

    Article  Google Scholar 

  • Göker, M., Voglmayr, H., Blázquez, G. G., & Oberwinkler, F. (2009). Species delimitation in downy mildews: The case of Hyaloperonospora in the light of nuclear ribosomal ITS and LSU sequences. Mycological Research, 113, 308–325.

    Article  PubMed  CAS  Google Scholar 

  • Gunasinghe, N., You, M. P., Banga, S. S., & Barbetti, M. J. (2014). High level resistance to Pseudocercosporella capsellae offers new opportunities to deploy host resistance to effectively manage white leaf spot disease across major cruciferous crops. European Journal of Plant Pathology, 138, 873–890.

    Article  Google Scholar 

  • Gunasinghe, N., You, M. P., Cawthray, G. R., & Barbetti, M. J. (2016). Cercosporin from Pseudocercosporella capsellae and its critical role in white leaf spot development. Plant Disease, 100, 1521–1531.

    Article  CAS  Google Scholar 

  • Hartmann, H., Sutton, J. C., & Procter, R. (1983). Effects of atmospheric water potentials, free water, and temperature on production and germination of sporangia in Peronospora parasitica. Canadian Journal of Plant Pathology, 5, 70–74.

    Article  Google Scholar 

  • Howlett, B., Ballinger, D., & Barbetti, M. J. (1999). Diseases. In Salisbury, P. A., Potter, T.D., McDonald, G., Green, A. G. (Eds.), Canola in Australia:The first thirty years (pp. 47–52). Canberra: Organising committee of 10th International Rapeseed Congress.

  • Jensen, B. D., Hockenhull, J., & Munk, L. (1999). Seedling and adult plant resistance to downy mildew (Peronospora parasitica) in cauliflower (Brassica oleracea convar. botrytis var. botrytis). Plant Pathology, 48, 604–612.

  • Jones, R. A. C., & Barbetti, M. J. (2012). Influence of climate change on plant disease infections and epidemics caused by viruses and bacteria. Plant Sciences Reviews, 22, 1–31 Online at http://www.cabi.org/cabreviews.

    Google Scholar 

  • Kofoet, A., & Fink, M. (2007). Development of Peronospora parasitica epidemics on radish as modelled by the effects of water vapour saturation deficit and temperature. European Journal of Plant Pathology, 117, 369–381.

    Article  Google Scholar 

  • Laemmlen, F. F., & Mayberry, K. S. (1984). Broccoli resistance to downy mildew. California Agriculture, 38, 17.

    Google Scholar 

  • Le Beau, F. J. (1945). Systemic invasion of cabbage seedlings by the downy mildew fungus. Journal of Agricultural Research, 71, 453.

    Google Scholar 

  • Li, H., Smyth, F., Barbetti, M. J., & Sivasithamparam, K. (2006). Relationship in Brassica napus seedling and adult plant responses to Leptosphaeria maculans is determined by plant growth stage at inoculation and temperature regime. Field Crops Research, 96, 428–437.

    Article  Google Scholar 

  • McKinney, H. H. (1923). Influence of soil temperature and moisture on infection of wheat seedlings by Helminthosporium sativum. Journal of Agricultural Research, 26, 195–217.

    Google Scholar 

  • Mohammed, A. E., You, M. P., & Barbetti, M. J. (2017). New resistances offer opportunnity for effective management of the downy mildew (Hyloperonospora parasitica) threat to canola. Crop and Pasture Science, 68, 234–242.

    Google Scholar 

  • Monteiro, A. A., Coelho, P. S., Bahcevandziev, K., & Valério, L. (2005). Inheritance of downy mildew resistance at cotyledon and adult-plant stages in ‘Couve Algarvia’ (Brassica oleracea var. tronchuda). Euphytica, 141, 85–92.

  • Nashaat, N. I., Heran, A., Awasthi, R. P., & Kolte, S. J. (2004). Differential response and genes for resistance to Peronospora parasitica (downy mildew) in Brassica juncea (mustard). Plant Breeding, 123, 512–515.

    Article  CAS  Google Scholar 

  • Natti, J. J., Hervey, G. E. R., & Sayre, C. B. (1956). Factors contributing to the increase of downy mildew of broccoli in New York state and its control with fungicides and Agrimycin. Plant Disease Reporter., 40, 118–124.

    CAS  Google Scholar 

  • Neik, T. X., Barbetti, M. J., & Batley, J. (2017). Current status and challenges in identifying disease resistance genes in Brassica napus. Frontiers in Plant Science, 8, 1788. https://doi.org/10.3389/fpls.2017.01788.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul, V. H., Klodt-Bussmann, E., Dapprich, P. D., Capelli, C., Tewari, J. P., Kohr, K., Thomas, J., & Dupprich, P. D. (1998). Results on preservation, epidemiology, and aggressiveness of Peronospora parasitica and results with regard to the disease resistance of the pathogen on Brassica napus. Bulletin OILB/SROP, 21, 49–56.

    Google Scholar 

  • Sangeetha, C. G., & Siddaramaiah, A. L. (2007). Epidemiological studies of white rust, downy mildew and Alternaria blight of Indian mustard (Brassica juncea (Linn.) Czern. and Coss.) African Journal of Agricultural Research, 2, 305–308.

    Google Scholar 

  • Satou, M., & Fukumoto, F. (1996). The host range of downy mildew, Peronospora parasitica, from Brassica oleracea, cabbage and broccoli crops. Japanese Journal of Phytopathology, 62, 393–396.

    Article  Google Scholar 

  • Si, P., Mailer, R. J., Galwey, N., & Turner, D. W. (2003). Influence of genotype and environment on oil and protein concentrations of canola (Brassica napus L.) grown across southern Australia. Crop and Pasture Science, 54, 397–407.

    Article  Google Scholar 

  • Silué, D., Nashaat, N. I., & Tirilly, Y. (1996). Differential responses of Brassica oleracea and B. rapa accessions to seven isolates of Peronospora parasitica at the cotyledon stage. Plant Disease, 80, 142–144.

    Article  Google Scholar 

  • Sivasithamparam, K., Barbetti, M. J., & Li, H. (2005). Recurring challenges from a necrotrophic fungal plant pathogen: A case study with Leptosphaeria maculans (causal agent of blackleg disease in Brassicas) in Western Australia. Annals of Botany, 96, 363–377.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spencer-Phillips, P. T., & Jeger, M. (Eds.). (2004). Advances in downy mildew research. New York: Springer-Verlag.

    Google Scholar 

  • Sylvester-Bradley, R., & Makepeace, R. J. (1984). A code for stages of development in canola (Brassica napus L.) Aspects of Applied Biology, 6, 399–419.

    Google Scholar 

  • Uloth, M., You, M. P., Finnegan, P. M., Banga, S. S., Yi, H., & Barbetti, M. J. (2014). Seedling resistance to Sclerotinia sclerotiorum as expressed across diverse cruciferous species. Plant Disease, 98, 184–190.

    Article  Google Scholar 

  • Uloth, M. B., You, M. P., Cawthray, G., & Barbetti, M. J. (2015). Temperature adaptation in isolates of Sclerotinia sclerotiorum affects their ability to infect Brassica carinata. Plant Pathology, 64, 1140–1148.

    Article  CAS  Google Scholar 

  • Wang, M., Farnham, M. W., & Thomas, C. E. (2000). Phenotypic variation for downy mildew resistance among inbred broccoli. Hortscience, 35, 925–929.

    Google Scholar 

  • Williams, P. H. (1985). ‘Downy mildew.’ Crucifer genetics cooperative (CRGC) resource book. Madison: Department of Plant Pathology, University of Wisconsin.

    Google Scholar 

  • Zhang, S., Yu, S., Zhang, F., Si, L., Yu, Y., Zhao, X., Zhang, D., & Wang, W. (2012). Inheritance of downy mildew resistance at different developmental stages in Chinese cabbage via the leaf disk test. Horticulture, Environment, and Biotechnology, 53, 397–403.

    Article  Google Scholar 

Download references

Acknowledgements

The first author gratefully acknowledges a Scholarship from the University of Kufa in Iraq. The authors grateful for the partial funding of both the Grains Research and Development Corporation (GRDC UWA 170 project “Emerging foliar diseases of canola”) and the School of Agriculture and Environment, University of Western Australia. We are also grateful for the generosity of seed companies in supplying seed of test varieties and the exceptional technical support from Robert Creasy and Bill Piasini in the UWA Plant Growth Facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Barbetti.

Ethics declarations

Ethical statement

This research did not involve any animal and/or human participants.

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, A.E., You, M.P. & Barbetti, M.J. Temperature and plant age drive downy mildew disease epidemics on oilseed Brassica napus and B. juncea . Eur J Plant Pathol 151, 703–711 (2018). https://doi.org/10.1007/s10658-017-1404-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1404-5

Keywords

Navigation