Skip to main content
Log in

Bacterial canker of cherry trees, Prunus avium, in South Africa

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

In the 1980’s the causal agents of bacterial canker of cherry trees in South Africa was reported to be Pseudomonas syringae pv. syringae and Pseudomonas syringae pv. morsprunorum. Subsequently, no further studies were undertaken on the disease or causal agents. The aim of the current study was to conduct field surveys to determine the current situation pertaining to bacterial canker in the major cherry producing areas of South Africa. Following isolations from infected trees, strains were characterized using biochemical as well as multilocus sequence analyses (MLSA). Pathogenicity tests were undertaken with immature cherry fruit as well as three different cherry cultivars. Although symptoms of bacterial canker were present in all areas surveyed, P. syringae isolates were only isolated from three sites in the Western Cape Province. The isolates collected in this study showed a hypersensitive response on tobacco leaves and were pathogenic on immature cherry fruit and cherry trees. The phenotypic tests and MLSA using four genes (cts, gapA, gyrB and rpoD) showed phenotypic and genetic identity with Pseudomonas syringae pv. syringae. Selected strains induced a hypersensitive response on tobacco leaves and were pathogenic on immature cherry fruit and green cherry tree shoots. The current study shows that P. syringae pv. syringae is responsible for bacterial canker in the Western Cape Province, South Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbasi, V., Rahimian, H., & Tajick-Ghanbari, M. A. (2013). Genetic variability of Iranian strains of Pseudomonas syringae pv. syringae causing bacterial canker disease of stone fruits. European Journal of Plant Pathology, 135, 225–235.

    Article  Google Scholar 

  • Agrios, G. N. (2005). Plant Pathology (5th ed.). Amsterdam: Elsevier Academic Press.

    Google Scholar 

  • Ait Tayeb, L., Ageron, E., Grimont, F., & Grimont, P. A. (2005). Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Research in Microbiology, 156, 763–773.

    Article  CAS  PubMed  Google Scholar 

  • Almeida, N. F., Yan, S., Cai, R., Clarke, C. R., Morris, C. E., Schaad, N. W., Schuenzel, E. L., Lacy, G. H., Sun, X., Jones, J. B., Castillo, J. A., Bull, C. T., Leman, S., Guttman, D. S., Setubal, J. C., & Vinatzer, B. A. (2010). PAMDB, a multilocus sequence typing and analysis database and website for plant-associated microbes. Phytopathology, 100, 208–215.

    Article  CAS  PubMed  Google Scholar 

  • Alonso, J. S. (2011). Producción, comercialización, Mercado y oportunidades de la cereza. [Sweet cherry production, marketing, and market opportunities]. VidaRURAL, 23, 46–50.

    Google Scholar 

  • Annesi, T., Motta, E., & Forti, E. (1997). First report of Blumeriella jaapii teleomorph on wild cherry in Italy. Plant Disease, 81, 1214.

    Article  Google Scholar 

  • Balaž, J., Iličić, R., Ognjanov, V., Ivanović, Ž., & Popović, T. (2016). Etiology of bacterial canker on young sweet cherry trees in Serbia. Journal of Plant Pathology, 98(2), 285–294.

    Google Scholar 

  • Barakat, R. M., & Johnson, D. A. (1997). Expansion of cankers caused by Leucostoma cincta on sweet cherry trees. Plant Disease, 81, 1391–1394.

    Article  Google Scholar 

  • Bassi, D. (1999). Apricot culture: present and future. Acta Horticulturae, 488, 35–40.

    Article  Google Scholar 

  • Berge, O., Monteil, C. L., Bartoli, C., Chandeysson, C., Guilbaud, C., Sands, D. C., & Morris, C. E. (2014). A user's guide to a data base of the diversity of Pseudomonas syringae and its application to classifying strains in this phylogenetic complex. PLoS One, 9, e105547.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bultreys, A., & Kaluzna, M. (2010). Bacterial cankers caused by Pseudomonas syringae on stone fruit species with special emphasis on the pathovars syringae and morsprunorum race 1 and race 2. Journal of Plant Pathology, 92, S1–S21.

    Google Scholar 

  • Casals, C., Segarra, J., De Cal, A., Lamarca, N., & Usall, J. (2015). Overwintering of Monilinia spp. on mummified stone fruit. Journal of Phytopathology, 163, 160–167.

    Article  Google Scholar 

  • Chandel, V., Rana, T., Hallan, V., & Zaidi, A. A. (2011). Detection of Prunus necrotic ring spot virus in plum, cherry and almond by serological and molecular techniques from India. Archives of Phytopathology and Plant Protection, 44, 1779–1784.

    Article  Google Scholar 

  • Crosse, J. E. (1966). Epidemiological relations of the pseudomonad pathogens of deciduous fruit trees. Annual Review of Phytopathology, 14, 291–310.

    Article  Google Scholar 

  • Doidge, E.M., Bottomley, A.M., van der Planck, J.E., and Pauer, G.D. 1953. A revised list of plant diseases in South Africa. Union of South Africa, Department of Agriculture, Science Bulletin No. 346, 1–122.

  • Gardan, L., Shafik, H., Belouin, S., Broch, R., Grimont, F., & Grimont, P. A. (1999). DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959). International Journal of Systematic Bacteriology, 49, 469–478.

    Article  CAS  PubMed  Google Scholar 

  • Goszczynska, T., Serfontein, J. J., & Serfontein, S. (2000). Introduction to practical phytobacteriology: A manual for phytobacteriology (2nd ed.). Pretoria, South Africa: Safrinet.

    Google Scholar 

  • Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment and editor and analyses program for windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  • Hwang, M. S. H., Morgan, R. L., Sakar, S. F., Wang, P. W., & Guttman, D. S. (2005). Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae. Applied and Environmental Microbiology, 71, 5182–5191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iličić, R., Balaž, J., Stojšin, V., & Jošić, D. (2016). Characterization of Pseudomonas syringae pathovars from different sweet cherry cultivars by RAPD analyses. Genetika, 48(1), 285–295.

    Article  Google Scholar 

  • Kałużna, M., & Sobiczewski, P. (2009). Virulence of Pseudomonas syringae pv. syringae pathovars and races originating from stone fruit trees. Phytopathologia, 54, 71–79.

    Google Scholar 

  • Kałużna, M., Ferrante, P., Sobiczewski, P., & Scortichini, M. (2010a). Characterization and genetic diversity of Pseudomonas syringae from stone fruits and hazelnut using repetitive-PCR and MLST. Journal of Plant Pathology, 92, 781–787.

    Google Scholar 

  • Kałużna, M., Pulawska, J., & Sobiczewski, P. (2010b). The use of PCR melting profile for typing Pseudomonas syringae isolates from stone fruit trees. European Journal of Plant Pathology, 126, 437–443.

    Article  Google Scholar 

  • Kałużna, M., Willems, A., Pothier, J. l. F., Ruinelli, M., Sobiczewski, P., & Puławska, J. (2016a). Pseudomonas cerasi sp. nov. (non Griffin, 1911) isolated from diseased tissue of cherry. Systemic and Applied Microbiology, 39, 370–377.

    Article  Google Scholar 

  • Kałużna, M., Willems, A., Pothier, J. F., Ruinelli, M., Sobiczewski, P., & Puławska, J. (2016b). Characterization and genetic diversity of causal agent of stone fruit bacterial canker Pseudomonas cerasi, a new pathogen of cherry. Acta Horticulturae, 1149, 9–14.

    Google Scholar 

  • Karimi-Kurdistani, G., & Harighi, B. (2008). Phenotypic and molecular properties of Pseudomonas syringae pv. syringae the causal agent of bacterial canker of stone fruit trees in Kurdistan province. Journal of Plant Pathology, 90, 81–86.

    CAS  Google Scholar 

  • Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khayamie, S., Niknejad, K. N., Rabie, S., & Ebadie, A. A. (2009). Genetic characterization of P. syringae pv. syringae strains from stone fruits based on RAPD analysis in Iran. Agricultura Tropica et Subtropica, 42(4), 162–166.

    Google Scholar 

  • King, E. O., Ward, M. K., & Raney, D. E. (1954). Two simple media for the demonstration of pyocyanin and fluorescin. Journal of Laboratory and Clinical Medicine, 44(2), 301–307.

    CAS  PubMed  Google Scholar 

  • Lamichhane, J. R., Varvaro, L., Parisi, L., Audergon, J.-M., & Morris, C. E. (2014). Disease and frost damage of woody plants caused by Pseudomonas syringae: Seeing the forest for the trees. Advances in Agronomy, 126, 235–295.

    Article  Google Scholar 

  • Latorre, B. A., & Jones, A. L. (1979). Pseudomonas morsprunorum,the cause of bacterial canker of sour cherry in Michigan, and its epiphytic association with P. syringae. Phytopathology, 69, 335–339.

    Article  Google Scholar 

  • Lelliott, R. A., & Stead, D. E. (1987). Methods for the diagnosis of bacterial diseases of plants. In T. F. Preece (Ed.), Methods in plant pathology (pp. 37–131). Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Lelliott, R. A., Billing, E., & Hayward, A. C. (1966). A determinative scheme for the fluorescent plant pathogenic pseudomonads. Journal of Applied Bacteriology, 29, 470–489.

    Article  CAS  PubMed  Google Scholar 

  • Lim, T. K. 2012. Edible medicinal and non-medicinal plants. Volume 4, Fruits. Springer, Dordrecht.

  • Luz, J.P.M. 1997. Detection and epidemiology of bacterial canker (Pseudomonas syringae) on wild cherry (Prunus avium). PhD thesis. University of Reaging.

  • Ménard, M., Sutra, L., Luisetti, J., Prunier, J. P., & Gardan, L. (2003). Pseudomonas syringae pv. avii (pv. nov.), the causal agent of bacterial canker of wild cherries (Prunus avium) in France. European Journal of Plant Pathology, 109, 565–576.

    Article  Google Scholar 

  • Morris, C. E., Sands, D. C., Vinatzer, B. A., Glaux, C., Guilbaud, C., Buffière, A., Yan, S., Dominguez, H., & Thompson, B. M. (2008). The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. Multidisciplinary Journal of Microbial Ecology, 2, 321–334.

    CAS  Google Scholar 

  • Nowell, R. W., Laue, B. E., Sharp, P. M., & Green, S. (2016). Comparative genomics reveals genes significantly associated with woody hosts in the plant pathogen Pseudomonas syringae. Molecular Plant Pathology, 17, 1409–1424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkinson, N., Bryant, R., Bew, J., & Elphinstone, J. (2011). Rapid phylogenetic identification of members of the Pseudomonas syringae species complex using the rpoD locus. Plant Pathology, 60, 338–344.

    Article  CAS  Google Scholar 

  • Posada, D. (2008). jModelTest: phylogenetic model averaging. Molecular Biology and Evolution, 25, 1253–1256.

    Article  CAS  PubMed  Google Scholar 

  • Potelwa, Y., and Ntombela, S. 2015. South African Fruit Trade Flow. Issue 17. Online publication. http://www.namc.co.za/upload/South-African-Fruit-Trade-Flow-February-2015-Issue-17.pdf.

  • Roos, I. M.M. 1986. Bacterial canker of stone fruit trees caused by Pseudomonas syringae pv. syringae and Pseudomonas syringae pv. morsprunorum: Numerical analyses of phenotypic features of the pathogens and systemic invasion of host tissue. PhD thesis. University of Stellenbosch.

  • Roos, I. M. M., & Hattingh, M. J. (1983). Fluorescent pseudomonads associated with bacterial canker of stone fruit in South Africa. Plant Disease, 67, 1267–1269.

    Article  Google Scholar 

  • Roos, I. M. M., & Hattingh, M. J. (1986). Bacterial canker of sweet cherry in South Africa. Phytophylactica, 18, 1–4.

    Google Scholar 

  • Roos, I. M. M., & Hattingh, M. J. (1987a). Pathogenicity and numerical analyses of phenotypic features of Pseudomonas syringae strains isolated from deciduous fruit trees. Phytopathology, 77, 900–908.

    Article  Google Scholar 

  • Roos, I. M. M., & Hattingh, M. J. (1987b). Systemic invasion of cherry leaves and petioles by Pseudomonas syringae pv. morsprunorum. Phytopathology, 77, 1246–1252.

    Article  Google Scholar 

  • Sarkar, S. F., & Guttman, D. S. (2004). Evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Applied and Environmental Microbiology, 70, 1999–2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sholberg, P. L., & Quamme, H. A. (1999). Dieback of pome fruit rootstocks caused by Pseudomonas syringae. Canadian Journal of Plant Science, 79, 387–394.

    Article  Google Scholar 

  • Stavrinides, J., McCloskey, J. K., & Ochman, H. (2009). Pea aphid as both host and vector for the phytopathogenic bacterium Pseudomonas syringae. Applied and Environmental Microbiology, 75, 2230–2235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suslow, T. V., Schroth, M. N., & Isaka, M. (1982). Appication of a rapid method for gram differentiation of plant pathogenic and saprophytic bacteria without staining. Phytopathology, 72, 917–918.

    Article  Google Scholar 

  • Swofford, D. L. 2002. Phylogenetic Analyses Using Parsimony (and other methods). Version 4.0b10. Sinauer Associates, Sunderland.

  • Vicente, J. G., Alves, J. P., Russell, K., & Roberts, S. J. (2004). Identification and discrimination of Pseudomonas syringae isolates from wild cherry in England. European Journal of Plant Pathology, 110, 337–351.

    Article  CAS  Google Scholar 

  • Watson, N. 2016. South Africa: extreme drought and heat has left its mark on cherry volumes. http://www.freshplaza.com/article/166877/South-Africa-Extreme-drought-and-heat-has-left-its-mark-on-cherry-volumes. Accessed 5 June 2017.

  • Wenneker, M., Meijer, H., Maas, F. M., de Bruine, A., Vink, P., & Pham, K. (2013). Bacterial canker of plum trees (Prunus domestica), caused by Pseudomonas syringae pathovars, in the Netherlands. Acta Horticulturae, 985, 235–239.

    Article  Google Scholar 

  • Yan, S., Liu, H., Mohr, T. J., Jenrette, J., Chiodini, R., Zaccardelli, M., Setubal, J. C., & Vinatzer, B. A. (2008). Role of recombination in the evolution of the model plant pathogen Pseudomonas syringae pv. tomato DC3000, a very atypical tomato strain. Applied and Environmental Microbiology, 74, 3171–3181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young, J. M., & Triggs, C. M. (1994). Evaluation of determinative tests for pathovars of Pseudomonas syringae van Hall 1902. Journal of Applied Bacteriology, 77, 195–207.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Horticultural Knowledge Group (HORTGRO) and National Research Foundation (NRF) are acknowledged for funding this research. In addition, the cherry farmers are acknowledged for access to their farms and information provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Coutinho.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Human participants and animal studies

No humans or animals were involved in the execution of this research. All authors have consented to the submission of this manuscript to EJPP.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otto, M., Petersen, Y., Roux, J. et al. Bacterial canker of cherry trees, Prunus avium, in South Africa. Eur J Plant Pathol 151, 427–438 (2018). https://doi.org/10.1007/s10658-017-1384-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1384-5

Keywords

Navigation