Skip to main content

Advertisement

Log in

Development of a quantitative real-time PCR assay using SYBR Green for early detection and quantification of Austropuccinia psidii in Eucalyptus grandis

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Commercial areas containing Eucalyptus plantations have expanded in recent years due to increased demands for pulp, paper and bioenergy. One of the threats that can reduce Eucalyptus production is the eucalyptus rust disease caused by Austropuccinia psidii, a biotrophic fungus that affects a broad range of Myrtaceae. An accurate diagnosis tool for the early detection of rust disease could be useful in breeding programs for selection of resistant plants against rust, in phytosanitary purposes or in rust epidemics studies. The aim of the present work was to develop a SYBR Green-based quantitative real-time PCR (qPCR) assay for the early detection and quantification of A. psidii in Eucalyptus grandis leaves. Three sets of primers based on the A. psidii ribosomal DNA intergenic space region (IGS), beta-tubulin and elongation factor genes were designed and evaluated. The assays using the IGS primer set resulted in the highest detection efficiency, detecting a lower limit of 0.5 pg of A. psidii DNA. Under artificial inoculation in plants, A. psidii was detected immediately after pathogen inoculation until 240 h post-inoculation using qPCR. In field validation of the method, A. psidii was detected using qPCR in naturally infected leaves with or without rust symptoms. This easy and fast method can be used for an efficient detection of A. psidii in E. grandis leaves. The implications of this tool for rust studies are discussed below.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alaei, H., Baeven, S., Maes, M., Hofte, M., & Heungens, K. (2009). Molecular detection of Puccinia horiana in Chrysanthemum morifolium through conventional and real time PCR. Journal of Microbiological Methods, 76, 136–145.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, J. B., & Stasovski, E. (1992). Molecular phylogeny of Northern hemisphere species of Armillaria. Mycologia, 84, 505–516.

    Article  CAS  Google Scholar 

  • Baldauf, S. L., & Doolittle, W. F. (1997). Origin and evolution of the slime molds. Proceedings of the National Academy of Sciences, 94, 12007–12012.

    Article  CAS  Google Scholar 

  • Baskarathevan, J., Taylor, R. K., Ho, W., McDougal, R. L., Shivas, R. G., & Alexander, B. J. R. (2016). Real-time PCR assays for the detection of Puccinia psidii. Plant Disease, 100, 617–624.

    Article  CAS  Google Scholar 

  • Beenken, L. (2017). Austropuccinia: a new genus name for the myrtle rust Puccinia psidii placed within the redefined family Sphaerophragmiaceae (Pucciniales). Phytotaxa, 297, 53–61.

    Article  Google Scholar 

  • Bilodeau, G. J., Lévesque, C. A., De Cock, A. W. A. M., Duchaine, C., Brière, S., Uribe, P., Martin, F. N., & Hamelin, R. C. (2007). Molecular detection of Phytophthora ramorum by real-time polymerase chain reaction using TaqMan, SYBR Green, and molecular beacons. Phytopathology, 97, 632–642.

    Article  CAS  PubMed  Google Scholar 

  • Carnegie, A. J. (2015). First report of Puccinia psidii (Myrtle Rust) in Eucalyptus plantations in Australia. Plant Disease, 99, 161.

    Article  Google Scholar 

  • Carnegie, A. J., Lidbetter, J. R., Walker, J., Horwood, M. A., Tesoriero, L., Glen, M., & Priest, M. (2010). Uredo rangelii, a taxon in the guava rust complex, newly recorded on Myrtaceae in Australia. Australasian Plant Pathology, 39, 463–466.

    Article  Google Scholar 

  • Coutinho, T. A., Wingfield, M. J., Alfenas, A. C., & Crous, P. W. (1998). Eucalyptus rust: a disease with the potential for serious implications. Plant Disease, 82, 819–825.

    Article  Google Scholar 

  • Covarelli, L., Beccari, G., Steed, A., & Nicholson, P. (2012). Colonization of soft wheat following infection of the stem base by Fusarium culmorum and translocation of deoxynivalenol to the head. Plant Pathology, 61, 1121–1129.

    Article  CAS  Google Scholar 

  • Crouch, J. A., & Szabo, L. J. (2011). Real-time PCR detection and discrimination of the southern and common corn rust pathogens Puccinia polysora and Puccinia sorghi. Plant Disease, 95, 624–632.

    Article  Google Scholar 

  • Dean, R., Van Kan, J. A. L., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., & Foster, G. D. (2012). The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13, 414–430.

    Article  PubMed  Google Scholar 

  • Demontis, M.A., Cacciola, S.O., Orru, M., Balmas, V., Chessa, V., Maserti, B.E., Mascia, L., Raudino, F., Di San Lio, M.G, & Migheli, Q. (2008). Development of real-time PCR systems based on SYBR Green I and TaqMan technologies for specific quantitative detection of Phoma tracheiphila in infected citrus. European Journal of Plant Pathology, 120, 339–351.

  • Giblin, F. (2013). Myrtle rust report: New Caledonia. http://www.davar.gouv.nc/portal/page/portal/davar/librairie/fichiers/25074187.PDF. Accessed 20 July 2016.

  • Glass, N. L., & Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61, 1323–1330.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glen, M., Alfenas, A. C., Zauza, E. A. V., Wingfield, M. J., & Mohammed, C. (2007). Puccinia psidii, a threat to the Australian environment and economy –a review. Australasian Plant Pathology, 36, 1–16.

    Article  Google Scholar 

  • Graça, R. N., Aun, C. P., Guimarães, L. M. S., Rodrigues, B. V. A., Zauza, E. A. V., & Alfenas, A. C. (2011). A new race of Puccinia psidii defeats rust resistance in eucalypt. Australasian Plant Pathology, 40, 442–447.

    Article  Google Scholar 

  • Grgurinovic, C. A., Walsh, D., & Macbeth, F. (2006). Eucalyptus rust caused by Puccinia psidii and the threat it poses to Australia. EPPO Bulletin, 36, 486–489.

    Article  Google Scholar 

  • Hayden, K. J., Rizzo, D., Tse, J., & Garbelotto, M. (2004). Detection and quantification of Phytophthora ramorum from California forests using a real-time polymerase chain reaction assay. Phytopathology, 94, 1075–1083.

    Article  CAS  PubMed  Google Scholar 

  • Kawanishi, T., Uemastu, S., Kakishima, M., Kagiwada, S., Hamamoto, H., Horie, H., & Namba, S. (2009). First report of rust disease on ohia and the causal fungus in Japan. Journal of General Plant Pathology, 75, 428–431.

    Article  Google Scholar 

  • Langrell, S., Glen, M., & Alfenas, A. C. (2008). Molecular diagnosis of Puccinia psidii (guava rust) - a quarantine threat to Australian eucalypt and Myrtaceae biodiversity. Plant Pathology, 57, 687–701.

    Article  CAS  Google Scholar 

  • Leite, T.F. (2012). Estabelecimento de um patossistema modelo e análise da interação molecular planta-patógeno entre Eucalyptus grandis e Puccinia psidii Winter por meio da técnica de RNA-Seq. Piracicaba, Brasil: Escola Superior de Agricultura Luiz de Queiraz, University of São Paulo, PhD thesis.

  • Leite, T. F., Moon, D. H., Lima, A. C. M., Labate, C. A., & Tanaka, F. A. O. (2013). A simple protocol for whole leaf preparation to investigate the interaction between Puccinia psidii and Eucalyptus grandis. Australasian Plant Pathology, 42, 79–84.

    Article  Google Scholar 

  • Maeda, H., Fujimoto, C., Haruki, Y., Maeda, T., Kokeguchi, S., Petelin, M., Arai, H., Nishimura, I. T. H., & Takashiba, S. (2003). Quantitative real-time PCR using TaqMan and SYBR Green for Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, tetQ gene and total bacteria. FEMS Immunology and Medical Microbiology, 39, 81–86.

    Article  CAS  PubMed  Google Scholar 

  • Marlatt, R. B., & Kimbrough, J. W. (1979). Puccinia psidii on Pimenta dióica in south Florida. Plant Disease Report, 3, 510–512.

    Google Scholar 

  • McTaggart, A. R., Roux, J., Granados, G. M., Gafur, A., Tarrigan, M., Santhakumar, P., & Wingfield, M. J. (2016a). Rust (Puccinia psidii) recorded in Indonesia poses a threat to forests and forestry in South-East Asia. Australasian Plant Pathology, 45, 83–89.

    Article  Google Scholar 

  • McTaggart, A. R., Shivas, R. G., van der Nest, M. A., Roux, J., Wingfield, B. D., & Wingfield, M. J. (2016b). Host jumps shaped the diversity of extant rust fungi (Pucciniales). New Phytologist, 209, 1149–1158.

    Article  PubMed  Google Scholar 

  • Muller, L. K., Lorch, J. M., Lindner, D. L., O’Connor, M., Gargas, A., & Blehert, D. S. (2013). Bat white-nose syndrome: a real-time TaqMan polymerase chain reaction test targeting the intergenic spacer region of Geomyces destructans. Mycologia, 105, 253–259.

    Article  CAS  PubMed  Google Scholar 

  • Nath, V. S., Hegde, V. M., Jeeva, M. L., Misra, R. S., Veena, S. S., Raj, M., Unnikrishnan, S. K., & Darveekaran, S. S. (2014). Rapid and sensitive detection of Phytophthora colocasiae responsible for the taro leaf blight using conventional and real-time PCR assay. FEMS Microbiology Letters, 352, 174–183.

    Article  CAS  PubMed  Google Scholar 

  • Pedley, K. F. (2009). PCR-based assays for the detection of Puccinia horiana on chrysanthemums. Plant Disease, 93, 1252–1258.

    Article  CAS  Google Scholar 

  • Quecine, M. C., Bini, A. P., Romagnoli, E. R., Andreote, F. D., Moon, D. H., & Labate, C. A. (2014). Genetic variability in Puccinia psidii populations as revealed by PCR-DGGE and T-RFLP markers. Plant Disease, 8, 16–23.

    Article  Google Scholar 

  • Roux, J., Greyling, I., Coutinho, T. A., Verleur, M., & Wingfield, M. J. (2013). The Myrtle rust pathogen, Puccinia psidii, discovered in Africa. IMA Fungus, 4, 155–159.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanzani, S. M., Li Destri Nicosia, M. G., Faedda, R., Cacciola, S. O., & Schena, L. (2014). Use of quantitative PCR detection methods to study biocontrol agents and phytopathogenic fungi and oomycetes in environmental samples. Journal of Phytopathology, 162, 1–13.

    Article  CAS  Google Scholar 

  • Scocco, E. A., Walcott, R. R., Jeffers, S. N., & Buck, J. W. (2013). Detection of Puccinia pelargonii-zonalis-infected geranium tissues and urediniospores. Journal of Phytopathology, 161, 341–347.

    Article  CAS  Google Scholar 

  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tommerup, I. C., Alfenas, A. C., & Old, K. M. (2003). Guava rust in Brazil – a threat to Eucalyptus and other Myrtaceae. New Zealand Journal of Forestry Science, 33, 420–428.

    Google Scholar 

  • Uchida, J., Zhong, S., & Killgore, E. (2006). First report of a rust disease on ‘Ohi’a caused by Puccinia psidii in Hawaii. Plant Disease, 90, 524.

    Article  Google Scholar 

  • Winter, G. (1884). Repertorium. Rabenhorstii fungi europaei et extraeuraopaei. Centuria XXXI et XXXII. Hedwigia, 23, 164–175.

    Google Scholar 

  • Xavier, A. A., Alfenas, A. C., Matsuoka, K., & Hodges, C. S. (2001). Infection of resistant and susceptible Eucalyptus grandis genotypes by urediniospores of Puccinia psidii. Australasian Plant Pathology, 30, 277–281.

    Article  Google Scholar 

  • Yan, L., Zhang, C., Ding, L., & Ma, Z. (2008). Development of a real-time PCR assay for the detection of Cladosporium fulvum in tomato leaves. Journal of Applied Microbiology, 104, 1417–1424.

    Article  CAS  PubMed  Google Scholar 

  • Zauza, E. A. V., Lana, V. M., Maffia, L. A., Araujo, M. M. F. C., Alfenas, R. F., Silva, F. F., & Alfenas, A. C. (2015). Wind dispersal of Puccinia psidii urediniospores and progress of eucalypt rust. Forest Pathology, 45, 102–110.

    Article  Google Scholar 

  • Zhuang, J. Y., & Wei, S. X. (2011). Additional materials for the rust flora of Hainan Province, China. Mycosystema, 30, 853–860.

    Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP (Grant 2008/50361-1, 2014/16804-4). We thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and FAPESP for the fellowships to A.P.B. (Proc. no.140040/2012-9 and 2013/07596-6), M.C.Q. (Proc. no. 2010/50445-0) and T.M.S. We thank Dr. Esteban Gonzalez (FuturaGene Corporation) for providing the Eucalyptus A. psidii populations and other facilities as well as Dr. Janice Uchida, Dr. Guus Bakkeren and UNESP/FCAV for providing DNA and urediniospores from different species of Puccinia or Austropuccinia for the specificity assays. We also thank Sarina Tsui and Thiago Gonçalves de Oliveira for helping in field sampling and Dr. Tsai Siu Mui and Dr. Danielle Gregorio Gomes Caldas for providing the structure for the reproducibility tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Alberto Labate.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and/or animals rights

There was no involvement of human participants and/or animals in the present study.

Informed consent

The manuscript has not been published previously and the content of the present article are original. The authors have contributed to the scientific work and are in accordance to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bini, A.P., Quecine, M.C., da Silva, T.M. et al. Development of a quantitative real-time PCR assay using SYBR Green for early detection and quantification of Austropuccinia psidii in Eucalyptus grandis . Eur J Plant Pathol 150, 735–746 (2018). https://doi.org/10.1007/s10658-017-1321-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1321-7

Keywords

Navigation